Studying the Peltier and Seebeck Effects in Thermoelectric Devices

Thomas Forrister September 20, 2018

After a pleasant day at the beach, you open your car door. It’s warm inside the vehicle, but it’s nothing a little air conditioning can’t fix. Then you sit down. The seat is burning hot, making for an uncomfortable ride home. Fortunately, there’s a way to avoid this scenario: Engineers can use thermoelectric devices that leverage the Seebeck and Peltier effects to control the temperature of car seats (among other applications).

Ler Mais

Thomas Forrister September 13, 2018

With the rise of 5G and other wireless millimeter-wave applications, there has been an increase in front-end antenna solutions that depend on monopole, dipole, and patch antennas. In these devices, the radiation efficiency tends to suffer due to the effect of lossy silicon substrate materials. Enter the dielectric resonator: Antennas using these resonators (made of nonmetallic materials) have a higher radiation efficiency. To increase directivity and gain at high frequencies, engineers can optimize dielectric resonator antenna (DRA) designs with simulation.

Ler Mais

Categorias

Thomas Forrister August 31, 2018

Hermann von Helmholtz was a German scientist, doctor, and philosopher who made advances in many scientific fields, including electrodynamics, optics, and thermodynamics. He invented several devices, such as the ophthalmoscope and the polyphonic siren, and is also known for the Helmholtz coil. By exploring the philosophy of science, Helmholtz made accurate connections about the laws of nature, perception, and empiricism.

Ler Mais

Categorias

Thomas Forrister August 17, 2018

“If you want to find the secrets of the universe, think in terms of energy, frequency, and vibration.” — Nikola Tesla Can we “see” sound? Not directly, but we can come close. By changing our perspective, we can learn a lot about the nature of acoustics. One way to observe acoustics phenomena is by studying standing waves in a solid medium known as a Chladni plate. A special technique creates patterns on the plate that reveal sound’s physical nature.

Ler Mais

Thomas Forrister August 8, 2018

Paul Dirac was a theoretical physicist who laid the foundations for quantum theory as we now know it. He was highly motivated by the pursuit of mathematical beauty, and his calculations led him to predict the existence of antimatter and reconcile special relativity with quantum mechanics. Regarded as the founder of quantum electrodynamics, Dirac played an important role in the development of atomic theory for the 20th century and beyond.

Ler Mais

Categorias

Thomas Forrister August 1, 2018

Considered the “Father of Nuclear Medicine”, George de Hevesy was a radiochemist who was just as interested in chemical processes as he was in their outcomes. Among his many discoveries, de Hevesy is best known for expanding the applications of X-ray florescence and using radioactive isotopes as tracers to study chemical processes. He also helped discover a chemical element and cofounded the field of radioactivation analysis.

Ler Mais

Categorias

Thomas Forrister July 23, 2018

The main design goal for a loudspeaker array is to achieve wider sound coverage than a single speaker could provide. At the same time, the radiation pattern of the array must be indistinguishable from that of a single speaker. One method for producing radially distributed sound for multiple loudspeakers is with a Bessel panel. By analyzing a benchmark model of a Bessel panel system, engineers can optimize the design of loudspeaker arrays and other acoustics systems.

Ler Mais

Categorias

Thomas Forrister July 18, 2018

Hendrik Lorentz was a Dutch physicist who clarified the concept of the electron within an atom and theorized the connection between electricity, magnetism, and light. Not only did Lorentz win the Nobel Prize for his work in electron theory, he also illuminated the path to other branches of theoretical physics, including quantum mechanics as well as general and special relativity.

Ler Mais

Categorias

Thomas Forrister July 3, 2018

In electrochemistry, it’s common to use a microdisk as the working electrode in an analytical technique known as cyclic voltammetry. However, unlike with a macroelectrode, diffusion at a microelectrode occurs very fast on the timescale of the experiment. To simplify the analysis, we can use an approximation that assumes the microdisk has stationary diffusion properties on the timescale of the voltammetry study — eliminating the need for a time-dependent model.

Ler Mais

Thomas Forrister June 27, 2018

Batch reactors are used to manufacture a wide variety of products in the fine chemical, pharmaceutical, and food industries. In some cases, fine chemical processing may require more consistent operating conditions than batch reactors can offer, and continuous plate reactors may then provide better control of the process. Chemical modeling can help in the design of continuous plate reactors that are optimized for thermal control and product purity.

Ler Mais

Thomas Forrister June 10, 2018

The early 1800s were difficult for the townsfolk of Dijon, France. They’d made several attempts to supply the region with clean water by drilling wells, but the wells were too few, too dirty, and too dry. Fortunately, Henry Darcy, an engineer and Dijon native dedicated to public service, found a solution. His study of fluid dynamics for the project led to the formulation of the equation now known as Darcy’s law, as well as other contributions to hydraulics.

Ler Mais

Categorias


Categorias


Tags

1 2 3