Por página:
Busca

All posts by Walter Frei

Improving Your Meshing with Swept Meshes

September 2, 2015

Modeling geometries with high aspect ratios can be one of the more challenging tasks for the finite element analyst. You want to have a mesh that will accurately represent the geometry and the solution, but you do not want too many elements, as solving your models would then require excessive computational resources. Here, we will look at using swept meshing to generate efficient and accurate finite element meshes in the context of some common modeling cases.

Using General Extrusion Operators to Model Periodic Structures

August 11, 2015

In the course of building multiphysics models, we often encounter situations in which the solution to one physics is periodic — or very nearly so — while the solutions to other physics of interest are nonperiodic. If we know this ahead of time, it is possible to exploit the periodicity to reduce computational requirements. Here, we will demonstrate how to accomplish this using the General Extrusion component couplings in COMSOL Multiphysics.

Computing Design Sensitivities in COMSOL Multiphysics

August 5, 2015

One useful — but in my experience, rarely used — capability available within COMSOL Multiphysics is the ability to compute design sensitivities. Assuming that you have a single objective function that is computed based on your finite element model, you can easily compute how sensitive this objective function is with respect to any model input, using only the core COMSOL Multiphysics package. In this blog post, we will look at how to use this functionality.

Tracking Material Damage with the Previous Solution Operator

July 21, 2015

When modeling a manufacturing process, such as the heating of an object, it is possible for irreversible damage to occur due to a change in temperature. This may even be a desired step in the process. With the Previous Solution operator, we can model such damage in COMSOL Multiphysics. Here, we will look at the “baking off” of a thin coating on a wafer heated by a laser.

Guide to Frequency Domain Wave Electromagnetics Modeling

June 30, 2015

Over the last several weeks, we’ve published a series of blog posts addressing the various domain and boundary conditions available for wave electromagnetics simulation in the frequency domain; as well as modeling, meshing, and solving options. In this blog post, I will tie all of this information together and provide an introduction to the various types of problems that you can solve in the RF and Wave Optics modules.

Using the Previous Solution Operator in Transient Modeling

June 25, 2015

COMSOL Multiphysics version 5.1 includes a Previous Solution operator within time-dependent studies. This operator allows you to evaluate quantities at the previous time step when using the default implicit time-stepping algorithm. Let us take a look at how this operator is implemented and then examine how it can be used for various modeling needs.

Modeling Laser-Material Interactions in COMSOL Multiphysics

June 22, 2015

A question that we are asked all of the time is if COMSOL Multiphysics can model laser-material interactions and heating. The answer, of course, depends on exactly what type of problem you want to solve, as different modeling techniques are appropriate for different problems. Today, we will discuss various approaches for simulating the heating of materials illuminated by laser light.

Simulation Tools for Solving Wave Electromagnetics Problems

June 18, 2015

When solving wave electromagnetics problems with either the RF or Wave Optics modules, we use the finite element method to solve the governing Maxwell’s equations. In this blog post, we will look at the various modeling, meshing, solving, and postprocessing options available to you and when you should use them.


EXPLORE O BLOG COMSOL