How to Set Up a Mesh in COMSOL Multiphysics® for CFD Analyses

Christian Wollblad June 11, 2018

The quality of a computational fluid dynamics (CFD) model is often determined by the quality of the mesh used to solve the problem. A good mesh facilitates convergence, reduces memory requirements, and results in accurate solutions. It is therefore worthwhile to invest time and thought into creating the mesh when solving a CFD problem. In this blog post, we describe the factors of a quality mesh and how to prepare a fluid flow model geometry for meshing.

Ler Mais

Ed Fontes June 6, 2018

The Adidas® Telstar® soccer ball is the official ball of the 2018 FIFA World Cup™, and the Nike® Ordem V soccer ball is used in the seven largest national leagues in Europe, including the top three: the Spanish La Liga, the English Premier League, and the Italian Serie A. Previously, we discussed an experimental setup for measuring the terminal velocity of these two soccer balls to see if there’s a difference that could affect player performance. Here’s what we found…

Ler Mais

Thomas Forrister June 5, 2018

The greenhouse effect has made it necessary for scientists to develop combustion processes that minimize the accumulation of carbon dioxide in the atmosphere. Possible fuels in these processes include biomass and other biofuels, which recycle carbon within a short timescale. But there’s a downside: Combustion of these materials produces carbon and ash particles that must be removed from the exhaust. To improve particle filtration, researchers studied electrostatic filter designs using models that were validated by comparing them to experimental data.

Ler Mais

Ed Fontes June 1, 2018

Every four years, people interested in association football/soccer (a few billion people) talk about the FIFA World Cup™. We at COMSOL are no exception. During coffee breaks and lunches, we are discussing the different teams, players, preparations, and the tiny details that might impact the teams. The ball is an important protagonist of the games. The subject of the ball combines our passion for soccer and physics into one discussion!

Ler Mais

Ed Fontes May 31, 2018

In a previous blog post, we discussed using field-based methods (level set and phase field) for modeling free surfaces. Another option, moving mesh, can handle free liquid surfaces that do not undergo topology changes. In this blog post, we will demonstrate how to use the moving mesh method for modeling free surfaces and compare the results with field-based methods.

Ler Mais

Thomas Forrister May 23, 2018

Multiphase flow involves the simultaneous flow of fluids of different phases, such as gases and liquid, or solid particles suspended in a fluid. As such, modeling multiphase flow can require multiple approaches. One approach is to use a bubbly flow model to analyze the effects of bubble-induced turbulence. Here, we discuss a benchmark model of liquid and gas flow in a water-filled airlift loop reactor and validate the simulation results with experiments.

Ler Mais

Ed Fontes May 15, 2018

There are four methods for modeling free liquid surfaces in the COMSOL Multiphysics® software: level set, phase field, moving mesh, and stationary free surface. In the first part of this blog series, we discuss the level set and phase field methods, which are field-based methods that describe almost any type of free liquid surface. In part two, we will compare the results from this post with those obtained using the Moving Mesh interface for solving free surface problems.

Ler Mais

Angela Straccia May 8, 2018

The lid-driven cavity is a popular problem within the field of computational fluid dynamics (CFD) for validating computational methods. While the boundary conditions are relatively simple, the flow features created are quite interesting and complex. Here, we demonstrate how to define this benchmark problem in the COMSOL Multiphysics® software. We also showcase techniques like mapped meshing and nonlinearity ramping, which can be applied to a wide variety of CFD models.

Ler Mais

Caty Fairclough April 25, 2018

The average human heart beats around 100,000 times in a single day. With each beat, the four valves within the heart open and close, transporting blood unidirectionally through its chambers. By simulating heart valves, medical researchers can study their behavior to address various cardiac health issues. As an example, a team from Veryst Engineering modeled a heart valve opening and closing with the COMSOL Multiphysics® software.

Ler Mais

Thomas Forrister April 24, 2018

Wastewater often contains organic and inorganic materials, which can be nonbiodegradable and even toxic. To reuse wastewater, these contaminants are removed via physical, chemical, and biological processes. Clarifiers treat wastewater by separating the particles via sedimentation, but their performance is affected by factors such as settling, turbulence, the ratio of the particles’ outer surfaces to mass, sudden direction changes in the flow, and the velocity profile. To design clarifiers for effective wastewater treatment, engineers can turn to fluid flow simulation.

Ler Mais

Caty Fairclough April 16, 2018

Ejectors have many applications, such as removing debris in outer space and providing refrigeration at your local supermarket. To improve ejectors for these and other uses, engineers aim to find optimal designs and operating conditions as well as accurately describe the flow within these devices. Simulation can help achieve these goals.

Ler Mais



1 2 3 4 5 15