Simulating Cancer Cell Migration in Microgravity with COMSOL®

Caty Fairclough August 16, 2017

Research shows that microgravity exposure has an effect on the human body, such as by suppressing immune cell activity. This phenomenon also affects cancer cell migration. Making use of this fact can lead to the identification of new therapeutic targets for metastatic cancer cells. In this blog post, we’ll discuss how a research team used the COMSOL Multiphysics® software to design a culturing system to study cancer cell migration in microgravity.

Ler Mais

Siva Sashank Tholeti August 10, 2017

Have you ever been curious about how to model supersonic flows, like those around Concorde or fighter jets? Generally, this process requires the resolution of shocks or expansion fans in the flow. Resolving discontinuities (e.g., shock waves) requires a high resolution and the numerical stability of strongly coupled mass, momentum, and energy conservation equations for fluid flow. Let’s discuss how to model supersonic flow past a diamond airfoil, which involves resolving shocks and expansion fans.

Ler Mais

Caty Fairclough August 9, 2017

Studying vacuum system designs can be difficult, since some analysis methods only work when the relative speed of the gas molecules is very large compared to the velocity of the enclosing walls. This is not the case for turbomolecular pumps, which we can model and analyze using a Monte Carlo approach and the Rotating Frame feature in the COMSOL Multiphysics® software. Let’s check out one example below.

Ler Mais

Caty Fairclough August 2, 2017

When designing heat sinks, it’s important to accurately measure their cooling capacity. By modeling heat transfer in these systems, we can calculate the temperature of the electronic components. The modeling approach we use will affect the accuracy of the results and the efficiency of the simulation. In this blog post, we compare two modeling approaches for analyzing electronic chip cooling. We also discuss new features in the COMSOL Multiphysics® software that make it easier to set up heat sink geometries.

Ler Mais

Caty Fairclough July 31, 2017

One application of acoustic streaming (AS), the process of using sound waves to generate steady fluid motion, is adjusting grain morphology during the metal solidification process. Since ensuring the best product possible is key, engineers in the metal processing industry must improve AS, which can require costly field tests and test rigs. To see if simulation can be used to reduce this need, researchers analyzed AS treatment with the COMSOL Multiphysics® software.

Ler Mais

Mads Herring Jensen July 25, 2017

Detailed modeling of the complex interaction of flow and acoustics is achieved in the COMSOL Multiphysics® software and add-on Acoustics Module using the linearized Navier-Stokes interfaces. With the release of version 5.3, the capabilities were further extended with the addition of a new stabilization scheme. This allows robust simulations of systems with acoustic properties that are modified by or depend on a turbulent background flow; e.g., automotive exhaust systems. Here, we introduce important modeling concepts and present application examples.

Ler Mais

Caty Fairclough July 24, 2017

If you were to travel back in time half a billion years to the Ediacaran period, you would find seas full of strange-looking creatures known to paleontologists as the ‘Ediacara biota’, the world’s first large, complex, multicellular lifeforms. We still have a lot to learn about these ancient creatures, including if they could move and how they fed. A research team sought answers to these questions by using CFD simulation to study an extinct organism from Earth’s early oceans: Parvancorina.

Ler Mais

Bridget Cunningham July 17, 2017

On the morning of March 22, 2006, NASA launched their Space Technology 5 mission. For about three months, miniaturized satellites explored Earth’s magnetic fields collecting high-quality measurements. Beyond gathering scientific data, the mission represents a turning point. Instead of large traditional satellite missions, miniaturized technology is taking precedence in space exploration. And within these systems, MEMS technology could serve as a means of active thermal control. Further improvements are already taking shape with the help of multiphysics simulation.

Ler Mais

Bridget Cunningham July 10, 2017

Of the 72 million potential hearing aid users around the world, each needs a device fitted to meet their needs. In-the-ear measurements are performed to ensure both comfort and effectiveness. These measurements require the use of a microphone — the size of which can cause issues. The device can be too large to fit into the measured sound field. Alternatively, it can be too big compared to the wavelength and disturb the acoustic field. One solution is a probe tube…

Ler Mais

Walter Frei July 6, 2017

The COMSOL Multiphysics® software offers several different formulations for solving turbulent flow problems: the L-VEL, algebraic yPlus, Spalart-Allmaras, k-ε, k-ω, low Reynolds number k-ε, SST, and v2-f turbulence models. These formulations are available in the CFD Module, and the L-VEL, algebraic yPlus, k-ε, and low Reynolds number k-ε models are also available in the Heat Transfer Module. In this blog post, learn why to use these various turbulence models, how to choose between them, and how to use them efficiently.

Ler Mais

Bridget Cunningham July 4, 2017

Many manufacturing processes already benefit from selective laser melting. The potential for combining this technique with high-melting materials is clear, but there are challenges to consider. For instance, these materials have a much narrower processing window. To better understand their behavior in selective laser melting, one research group built a model to analyze the thermal and fluid dynamics of laser beam-matter interaction. Their results generated further momentum in extending the use of this technique to process refractory metals.

Ler Mais



1 5 6 7 8 9 31