Por página:

Plasma Physics Blog Posts

How to Analyze Turbomolecular Pumps with COMSOL Multiphysics®

January 12, 2021

Modeling gas flow in a turbomolecular pump calls for specialized numerical methods, because at such low pressures, the gas molecules rarely collide with each other.

Computational Electromagnetics Modeling: Which Module to Use?

July 28, 2020

If you work with a particular electromagnetic device or application area, you might be wondering which module in the COMSOL product suite is right for you. Keep reading for a comprehensive intro.

Global Modeling of a Non-Maxwellian Discharge in COMSOL®

November 19, 2018

Keep reading for a demonstration of how to model a non-Maxwellian discharge with the Boltzmann equation in the two-term approximation using COMSOL Multiphysics®.

Introduction to Plasma Modeling with Non-Maxwellian EEDFs

July 5, 2017

Modeling plasma that has a non-Maxwellian electron energy distribution function (EEDF) results in a catch-22. However, this issue can be overcome by building a simulation application.

A Multilevel Approach to Modeling Planar Discharge in CO2 Lasers

April 24, 2017

Check out the multilevel approach to plasma modeling used by a researcher in the laser industry, who used the flexibility and functionality of COMSOL Multiphysics® to optimize a gas laser design.

MIT’s PSFC Designs a Tokamak to Survive Plasma Disruptions

October 17, 2016

Developing a device that generates nuclear fusion would provide a nearly limitless amount of clean energy on Earth. But while work on thermonuclear fusion began in the 1950s, engineers are still trying to make this goal a reality. One approach has been to use magnetic confinement devices known as tokamaks. See why a group of engineers at MIT’s Plasma Science Fusion Center (PSFC) turned to simulation to address a key challenge in tokamak design: instability due to plasma disruptions.

Control Current and Voltage Sources with the AC/DC Module

February 25, 2016

If you’ve ever worked with the Terminal boundary condition in COMSOL Multiphysics, you know that this electrical boundary condition can apply a current or voltage, among other options. But did you know that you can also dynamically switch between excitation types during a transient simulation? This is useful if you are trying to model a current- or voltage-limited power supply, for example. Today, we will look at how to implement such a switching behavior.

The Boltzmann Equation, Two-Term Approximation Interface

April 8, 2015

In a previous blog post, we introduced readers to different kinds of electron energy distribution functions (EEDFs) and their importance in plasma modeling. Today, we focus our attention on the Boltzmann Equation, Two-Term Approximation interface, demonstrating its use with an example from our Model Library.

1–8 of 13