## How to Perform a Nonlinear Distortion Analysis of a Loudspeaker Driver

##### Kirill Shaposhnikov June 18, 2018

A thorough analysis of a loudspeaker driver is not limited to a frequency-domain study. Some desirable and undesirable (but nonetheless exciting) effects can only be caught by a nonlinear time-domain study. Here, we will discuss how system nonlinearities affect the generated sound and how to use the COMSOL Multiphysics® software to perform a nonlinear distortion analysis of a loudspeaker driver.

Ler Mais##### Christian Wollblad June 13, 2018

We have already discussed the factors that make a high-quality mesh and how to prepare a CFD model geometry for meshing. In this follow-up blog post, learn about physics-controlled meshing, adaptive mesh refinement, and how to use a variety of meshing tools in the COMSOL Multiphysics® software for your fluid flow simulations.

Ler Mais##### Pär Persson Mattsson June 12, 2018

In a previous blog post, we explained how to run a job from the COMSOL Multiphysics® software on clusters directly from the COMSOL Desktop® environment, without any interaction with a Linux® operating system terminal. Since this terminal is sometimes treated with excessive respect, the ability to start a cluster job directly from the graphical user interface is one of the most useful features in the COMSOL® software. Plus, there’s more to it… Enter the Cluster Sweep node.

Ler Mais##### Christian Wollblad June 11, 2018

The quality of a computational fluid dynamics (CFD) model is often determined by the quality of the mesh used to solve the problem. A good mesh facilitates convergence, reduces memory requirements, and results in accurate solutions. It is therefore worthwhile to invest time and thought into creating the mesh when solving a CFD problem. In this blog post, we describe the factors of a quality mesh and how to prepare a fluid flow model geometry for meshing.

Ler Mais##### Mranal Jain June 4, 2018

If you want to create an animation from your simulation results, the COMSOL Multiphysics® software offers a variety of powerful and flexible options. In this blog post, we will explore the idea of creating a nontrivial animation by combining slices along the azimuthal direction for a 3D model.

Ler Mais##### Ed Fontes June 1, 2018

Every four years, people interested in association football/soccer (a few billion people) talk about the FIFA World Cup™. We at COMSOL are no exception. During coffee breaks and lunches, we are discussing the different teams, players, preparations, and the tiny details that might impact the teams. The ball is an important protagonist of the games. The subject of the ball combines our passion for soccer and physics into one discussion!

Ler Mais##### Ed Fontes May 31, 2018

In a previous blog post, we discussed using field-based methods (level set and phase field) for modeling free surfaces. Another option, moving mesh, can handle free liquid surfaces that do not undergo topology changes. In this blog post, we will demonstrate how to use the moving mesh method for modeling free surfaces and compare the results with field-based methods.

Ler Mais##### Walter Frei May 25, 2018

One of the more common uses of the AC/DC Module, an add-on to the COMSOL Multiphysics® software, is for modeling conductors and other lossy materials in time-varying magnetic fields when there are significant induced currents. The appropriate modeling approach depends upon how quickly the magnetic fields vary over time. Here, we review the basics and describe various modeling techniques to use.

Ler Mais##### Ed Fontes May 15, 2018

There are four methods for modeling free liquid surfaces in the COMSOL Multiphysics® software: level set, phase field, moving mesh, and stationary free surface. In the first part of this blog series, we discuss the level set and phase field methods, which are field-based methods that describe almost any type of free liquid surface. In part two, we will compare the results from this post with those obtained using the Moving Mesh interface for solving free surface problems.

Ler Mais##### Angela Straccia May 8, 2018

The lid-driven cavity is a popular problem within the field of computational fluid dynamics (CFD) for validating computational methods. While the boundary conditions are relatively simple, the flow features created are quite interesting and complex. Here, we demonstrate how to define this benchmark problem in the COMSOL Multiphysics® software. We also showcase techniques like mapped meshing and nonlinearity ramping, which can be applied to a wide variety of CFD models.

Ler Mais##### Stuart Barnes May 7, 2018

The Ray Optics Module extends the modeling capabilities of the COMSOL Multiphysics® software to include ray tracing simulation. This module makes it possible to accomplish advanced thermal, structural, and other studies of complex optical systems in an integrated software environment. The first step in a successful simulation is the creation of the model geometry. This blog post examines how to create a complex lens geometry, using the Petzval lens as an example.

Ler Mais