A Galeria de Aplicações possui tutorias sobre o COMSOL Multiphysics® e aplicativos de demonstração pertinentes às áreas de elétrica, mecânica estrutural, acústica, escoamento e química. Você pode usar esses exemplos como um ponto de partida para o seu próprio trabalho de simulação baixando o modelo do tutorial ou o aplicativo e suas instruções. Use a função "Busca Rápida" para encontrar modelos da sua área de interesse. Para baixar os arquivos MPH, faça o login, ou se cadastre, no COMSOL Access usando uma licença válida do COMSOL, para poder baixar os arquivos MPH. Note que muitos dos exemplos disponibilizados aqui também podem ser acessados através da Application Libraries que faz parte do software COMSOL Multiphysics® e está disponível a partir do menu File.

COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Thermophoresis

When a temperature gradient in a gas exists, suspended particles will tend to move from regions of high temperature to low. The force which produces this effect is called the thermophoretic force. Gas molecules colliding with a particle from the hot side have a higher velocity than the cold side, which results in a net force towards cold areas. This effect can be exploited to create thermal ...

Buoyancy Flow in Water

This example studies the stationary state of free convection in a cavity filled with water and bounded by two vertical plates. To generate the buoyancy flow, the plates are heated at different temperatures, bringing the regime close to the transition between laminar and turbulent. To prepare the model, an estimation of the flow regime is performed using the Reynolds, Grashof, Rayleigh and ...

Modeling a Conical Dielectric Probe for Skin Cancer Diagnosis

The response of a millimeter wave with frequencies of 35 GHz and 95 GHz is known to be very sensitive to water content. This model utilizes a low-power 35 GHz Ka-band millimeter wave and its reflectivity to moisture for non-invasive cancer diagnosis. Since skin tumors contain more moisture than healthy skin, it leads to stronger reflections on this frequency band. Hence the probe detects ...

Turbulent Flow Through a Shell-and-Tube Heat Exchanger Cross Section

This model studies a part of a shell-and-tube heat exchanger where hot water enters from above. The cooling medium flows through the tubes that, in this model, impose a constant temperature at the walls. Furthermore, the tubes are assumed to be made of stainless steel and the heat flux is also modeled through them. The purpose of the model is to show the coupling between the k-epsilon ...

Composite Thermal Barrier

This example shows how to set up multiple sandwiched thin layers with different thermal conductivities in two different ways. First, the composite is modeled as a 3D object. In the second approach the Thin thermally resistive layer boundary condition is used to avoid resolving the thin domains. The technique is useful when modeling heat transfer through thermal barriers like multilayer coatings.

Finned Pipe

Finned pipes are used for coolers, heaters, or heat exchangers to increase heat transfer. They come in different sizes and designs depending on the application and requirements. When the fins are placed outside the pipe, they increase the heat exchange surface of the pipe so that a cooling or heating external fluid can exchange heat more efficiently. When placed inside the pipe, it is the inner ...

Equivalent Properties of Periodic Microstructures

Periodic microstructures are frequently found in composite materials, such as carbon fibers and honeycomb structures. They can be represented by a unit cell repeated along three directions of propagation. To reduce computational costs, simulations may replace all of the microscopic details of a composite material with a homogeneous domain with equivalent properties. This app computes the ...

Nonisothermal MEMS Heat Exchanger

The example concerns a stainless-steel MEMS heat exchanger, which you can find in lab-on-a-chip devices in biotechnology and in microreactors such as for micro fuel cells. This model examines the heat exchanger in 3D, and it involves heat transfer through both convection and conduction. The model solves for the temperature and heat flux in the device and investigate the convective term’s ...

Thermo-Photo-Voltaic Cell

This model illustrates an application that maximizes surface-to-surface radiative fluxes and minimizes conductive heat fluxes. A thermo-photo-voltaic (TPV) cell generates electricity from the combustion of fuel and through radiation. The fuel burns inside an emitting device that radiates intensely. Photo-voltaic (PV) cells—almost like solar cells—capture the radiation and convert it to ...

Rapid Thermal Annealing

In the semiconductor industry, rapid thermal annealing (RTA) is a semiconductor process step used for the activation of dopants and the interfacial reaction of metal contacts. In principle, the operation involves rapid heating of a wafer from ambient to approximately 1000–1500 K. As soon as the wafer reaches this temperature, it is held there for a few seconds and then finally quenched. An ...