A Galeria de Aplicações possui tutorias sobre o COMSOL Multiphysics® e aplicativos de demonstração pertinentes às áreas de elétrica, mecânica estrutural, acústica, escoamento e química. Você pode usar esses exemplos como um ponto de partida para o seu próprio trabalho de simulação baixando o modelo do tutorial ou o aplicativo e suas instruções. Use a função "Busca Rápida" para encontrar modelos da sua área de interesse. Para baixar os arquivos MPH, faça o login, ou se cadastre, no COMSOL Access usando uma licença válida do COMSOL, para poder baixar os arquivos MPH. Note que muitos dos exemplos disponibilizados aqui também podem ser acessados através da Application Libraries que faz parte do software COMSOL Multiphysics® e está disponível a partir do menu File.

Rotordynamics Modulex

Modeling Vibration and Noise in a Gearbox: Bearing Version

This example is an extension of a model used to study the vibration and noise in a 5-speed synchromesh gearbox in a manual transmission vehicle. In this version of the model, a detailed representation of a roller bearing is used instead of hinge joints with elastic stiffness. First, the ... Saiba Mais

Reciprocating Engine with Hydrodynamic Bearings

A single cylinder reciprocating engine supported on hydrodynamic bearings is studied. A starting torque is applied to bring the engine to required rpm. The loading torque is switched on once the engine picks up speed. After the start-up, the engine operates on its own driven by the ... Saiba Mais

Rotors Connected Through Helical Gears

In this tutorial model, learn how to model multiple rotors connected through helical gears using the Rotordynamics Module, an add-on product to the Structural Mechanics Module and COMSOL Multiphysics®. When modeling geared rotors, the presence of gears in the system induces the lateral ... Saiba Mais

Shaft Vibration due to Gear Rattle and Bearing Misalignment

In a gearbox, vibrations due to gear rattling and bearing misalignment are well known sources of noise. In this example, two shafts connected through a pair of gears are considered. The shafts are supported on roller bearings at their ends. Initially, the driven shaft is unloaded and the ... Saiba Mais

Vibration Control in a Motor Drive Using an Active Magnetic Bearing

Active magnetic bearings are often used for controlling the vibration level in mechanical systems. In this example, a motor driven rotor system in which the speed of the system is gradually increased is considered. The system vibrates due to existing imbalances. As the rotor speed ... Saiba Mais

Stability of a Turbocharger Under the Influence of Cross-Coupled Bearing Forces

Cross-coupled forces present in a hydrodynamic bearing often act as a negative damping in a rotor. Near the critical speed, this may lead to uncontrolled vibration of the turbocharger causing a risk of bearing failure. In this example, the influence of the cross-coupling forces on the ... Saiba Mais

Rotordynamic Analysis of a Crankshaft

See how to perform a vibration analysis of the crankshaft of a 3-cylinder reciprocating engine in this tutorial model. Due to the eccentricity of the crank-pin and balance masses on the crankshaft, it undergoes self-excited vibration under rotation. The crankshaft is modeled using solid ... Saiba Mais

Rotor Bearing System Simulator

This app demonstrates the following: Navigation system using toggle buttons in the ribbon and Back/Forward buttons in the settings window Selecting predefined or user-defined materials Using a table for input of geometry objects The app simulates a rotor bearing system consisting of ... Saiba Mais

Simply Supported Beam Rotor

In this tutorial model, you will see how to set up eigenfrequency and transient analyses (using FFT) of a rotor with various mountings and bearing supports. The example illustrates how to use Campbell and Waterfall plots to find the critical speed. It also demonstrates the range of ... Saiba Mais

Effect of Bearing Misalignment on Rotor Vibration

In this example, a rotor supported on two hydrodynamic bearings is analyzed. An eccentric disk located between the two bearings causes the rotor to whirl. One of the bearings is misaligned with the axis of the rotor. The Beam Rotor with Hydrodynamic Bearing interface in the ... Saiba Mais

Primeiro
Anterior
1–10 of 20