A Galeria de Aplicações possui tutorias sobre o COMSOL Multiphysics® e aplicativos de demonstração pertinentes às áreas de elétrica, mecânica estrutural, acústica, escoamento e química. Você pode usar esses exemplos como um ponto de partida para o seu próprio trabalho de simulação baixando o modelo do tutorial ou o aplicativo e suas instruções. Use a função "Busca Rápida" para encontrar modelos da sua área de interesse. Para baixar os arquivos MPH, faça o login, ou se cadastre, no COMSOL Access usando uma licença válida do COMSOL, para poder baixar os arquivos MPH. Note que muitos dos exemplos disponibilizados aqui também podem ser acessados através da Application Libraries que faz parte do software COMSOL Multiphysics® e está disponível a partir do menu File.


Generalized Kelvin Viscoelastic Material

The behavior of viscoelastic materials can be represented by conceptual models composed of elastic and viscous elements connected in series or in parallel. The rheology of the generalized Kelvin model (also called generalized Kelvin-Voigt model) consists of an elastic spring to represent the instantaneous stiffness plus n Kelvin-Voigt branches connected in series. This example shows how to ...

Scordelis-Lo Roof Shell Benchmark

In this example a thin curved membrane is built and solved using the Shell interface. This model is a widely used benchmark model denoted the Scordelis-Lo roof. The computed maximum z-deformation is compared with the value given in Proposed Standard Set of Problems to Test Finite Element Accuracy, Finite Elements in Analysis and Design, 1985.

Kirsch Infinite Plate Problem

This model describes a static stress analysis to obtain the stress distribution in the vicinity of a small hole in an infinite plate. The model is a classic benchmark and is described in Mechanics of Material, by D. Roylance. The stress level is then compared with the theoretical values.

Transient Rolling Contact - new

This concept example shows how to handle a transient contact problem with stick-slip friction transition. A soft hollow pipe subjected to gravity load is released at the top of a halfpipe. The pipe motion varies between sliding and rolling, depending on its position in the halfpipe and its velocity. The cross section of the pipe is also ovalized due to the contact and inertial forces. An energy ...

In-Plane and Space Truss

Trusses are elements which can only sustain axial forces. You can use trusses to model truss works where the edges are straight as well structures like sagging cables. In the following example you first build and solve a simple 2D truss model using the 2D Truss interface. Later on, you analyze a 3D variant of the same problem using the 3D Truss interface. This model calculates the deformation ...

Thermally Loaded Beam

In this example you will build and solve a 3D beam model using the 3D Beam interface. This model shows how a thermally induced deformation of a beam is modeled. Temperature differences are applied across the top and bottom surfaces as well as the left and right surfaces of the beam. The calculated solution is compared to the analytical solution.

Pinched Hemispherical Shell

This example studies the deformation of a hemispherical shell, where the loads cause significant geometric nonlinearity. The maximum deflections are more than two magnitudes larger than the thickness of the shell. The problem is a standard benchmark, used for testing shell formulations in a case which contains membrane and bending action, as well as large rigid body rotation.

Truss Tower Buckling

Buckling analysis is the search for the critical compressive load beyond which structures become unstable. The Truss Tower Buckling analysis application simulates the buckling of a truss tower under vertical compressive loads to provide the critical compressive load. With the app, you can compute and analyze the buckling load for a tower under different conditions of geometry, i.e., various ...

Instability of a Space Arc Frame

This model illustrates the instability of a space arc frame under concentrated vertical loading. The *Beam* interface is utilized. Two different approaches are used: 1. A full incremental nonlinear analysis, where a small lateral load is applied to break the symmetry of the structure. 2. A linear buckling study. The results are compared with available literature data.

In-Plane Framework with Discrete Mass and Mass Moment of Inertia

In this model, you build and solve a 2D beam model using the 2D Structural Mechanics Beam interface. This model describes the eigenfrequency analysis of a simple geometry. A point mass and point mass moment of inertia are used in the model. The two first eigenfrequencies are compared with the values given by an analytical expression.