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Abstract: To assess the importance of assembly 
discontinuity factors (ADF), a highly 
heterogeneous reactor core was simulated using 
a COMSOL model in which ADF are not used. 
The resulting errors in assembly powers were 
found to be unacceptably high. This indicates 
that for highly heterogeneous cores such as one 
with MOX and LEU fuel assemblies, the use of 
techniques that counter the effect of 
homogenization, such as ADF, are necessary to 
reduce power errors to acceptable levels.  A 
direct correlation was found between ADF and 
assembly power error.
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1. Introduction

Most modern reactor core physics codes rely 
on a solution of the few-group neutron diffusion 
equation. To make the computational time 
manageable, domains over which the equation is 
solved are often homogenized as much as 
possible, typically at the fuel assembly or lattice 
cell level.  Because homogenization affects the 
solution, various techniques have been 
developed to counter the effect of 
homogenization.  One technique is through the 
use of what i s  now commonly known as 
assembly discontinuity factors (ADF) [1].

In reactor cores where the lattice design 
results in a low degree of heterogeneity, such as 
in a CANDU® Reactor, the use of ADFs is less 
important and can usually be ignored [2].  
However, this may not be the case in reactors 
that use light water as a moderator/coolant, and 
with reactors that use a mix of lattices with low 
enriched uranium (LEU) and mixed 
uranium/plutonium oxide (MOX) fuels.

This paper reports the results of studies 
performed to examine errors in assembly powers 
when ADF’s are not implemented in the analysis 
of a relatively heterogeneous reactor core, 

making use of data from an international 
benchmark problem [3].  The purpose of the 
benchmark problem was to assess the ability of 
modern reactor physics codes, which use ADFs, 
to simulate the utilization of weapons-grade 
plutonium in a four-loop Westinghouse 
(Pressurized Water Reactor) PWR.

A complete information package was 
obtained for the international benchmark 
problem from the NEA [4], which contained all 
input parameters, the geometry as well as output 
from various participants in the benchmark study 
of a Westinghouse PWR loaded with MOX and 
LEU fuel assemblies.

The core chosen for the benchmark 
simulation was based on a four-loop 
Westinghouse PWR power plant similar to the 
reactor chosen for plutonium disposition in the 
USA. COMSOL [5], a finite element package 
was used to solve the two-group neutron 
diffusion equation using the built-in PDE 
Coefficient Form Eigenvalue mode.

The information package ensured that data 
used in the COMSOL simulation was identical to 
that used in the benchmark study.  Due to the 
complexity of the geometry and structure of the 
data files, the coupling of COMSOL and 
MATLAB [6] was essential.  MATLAB was also 
used to automate the COMSOL simulation, for 
post-processing and comparing the COMSOL 
results with those from the other codes.

2. Theory and Analysis 

The first step in the analysis was to create the 
geometry for the benchmark problem. The core 
consists of square fuel assemblies surrounded by 
a reflector with the same width as the fuel 
assembly pitch, as shown in Fig. 1.

Though COMSOL contains a CAD 
environment which allows creation of objects in 
1-D, 2-D, and 3-D, it is often desirable to import 
a geometry that has been created in another CAD 
environment. In this case Solid Edge was used to 
create the geometry.
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Fig. 1.  Benchmark geometry

The mathematical problem being solved is 
the two-energy-group isotropic neutron diffusion 
equation.
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In the equations, numerical indices 1 and 2 
designate fast and thermal neutrons or energy 
groups one and two respectively. The subscript 
12 designates scatter from group 1 to 2 
(downscatter) and 21 designates scatter from 
group 2 to 1 (upscatter) and the isotropic 
diffusion coefficient, D = 1/(3tr).

The right-hand sides of Eq. (1) and Eq. (2) 
are the source terms for each group, which are a 
result of fission and/or scatter from one group to 
another. It is assumed that all fission neutrons 
are fast neutrons.

The only source term for thermal neutrons is 
via downscatter from group 1. The left side of 
Eq. (1) Eq. (2) are the loss terms for each group, 
which occur as a result of leakage, absorption 
and scatter from one group to another.

Eq. (1) and Eq. (2) can be written in matrix 
notation as follows
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Eq. 5 is a generalized eigenvalue equation of 
the form

 FM  (6)

where M is the loss matrix given by scattering, 
leakage and absorption:
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Eq. 5 is solved using COMSOL’s built-in 
PDE Coefficient Form Eigenvalue mode, which 
has the form
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This can be made equivalent to Eq. 7 by setting
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Fig. 2 shows the fueling arrangement, which 
is a quarter-core loading pattern.

Fig. 2.  Benchmark fuel loading scheme

M and U stand for MOX and Uranium fuels 
respectively, with enrichment (%) indicated 
beside the fuel designation. For each fuel type, 
the benchmark information package contains one 
data file covering a range of burnups. The full 
core geometry, shown in Fig. 1, is obtained by a 
series of reflections.

The last step in building this model is the 
selection of appropriate boundary conditions. 
Continuous flux and current interface boundary 
conditions, the default for interior surfaces, were 



applied to all fuel assemblies and the inner 
reflector surface.

For the four outer reflector surfaces, a 
boundary condition derived from transport 
theory should be applied. This condition states 
that the flux is assumed to drop linearly outside 
the external reflector boundary and vanish at a 
distance of 0.7104tr. Fig. 3 illustrates the 
vanishing flux boundary condition in 1-D.
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Fig. 3 Vanishing flux boundary condition

This can be reformulated as a boundary 
condition.
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Substituting for x2, the expression for the 
boundary condition becomes
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Generalizing to a multidimensional surface
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where the subscript “b” designates the reflector 
vacuum boundary and Dg is the diffusion 
coefficient in the reflector for neutrons belonging 
to energy group g. 

A Dirichlet boundary condition is of the form 
h = r where h, which in this particular problem 
is 1 and r = -2.312* Dg * b.  Unfortunately, 
the current implementation of the Dirichlet 
boundary condition in COMSOL does not permit 
a value of r other than 0. As a result, the 
COMSOL model in this analysis used a zero flux 
boundary condition at the outer edge of the 
reflector.

In reality, for most cores the flux vanishes at 
a distance of distance of 2-3 cm outside the 
reflector. It i s  therefore expected that the 
COMSOL model will return slightly higher 
errors for assembly powers adjacent to the 
reflector.

The Direct (PARDISO out of core) solver 
was chosen as it is a highly efficient solver for 

symmetric systems and often uses less memory 
than other solvers. The mesh used in the analysis 
is shown in Fig. 4, with rectangular mesh 
elements chosen for fuel assemblies.

Fig. 4.  Mesh used in COMSOL model

The parts of the benchmark problem 
analyzed were assembly powers and keff for the 
All Rods Out (ARO) state.

Each assembly (square region) shown in Fig. 
1 actually consists of a 17x17 array of fuel pin 
cells, with each fuel pin in turn composed of 
concentric regions of water and fuel. Since 
modeling the detailed geometry at the pin and 
sub-pin level, called a heterogeneous model, is
computationally expensive, most reactor physics 
codes often model the assemblies as a single 
unit, called a homogeneous model.  Material and 
neutronic properties for the composite unit are 
obtained from homogenization of the assembly 
substructure.

Though computationally convenient, 
homogenization introduces errors when 
compared to a calculation which models fine 
details of the core. The principal error is in the 
node-integrated reaction rate in the assembly. An 
improvement to standard homogenization, 
widely used for light water reactors is 
Generalized Equivalence Theory (GET) [1]. 
According to GET the node-integrated reaction 
rates of the fine and coarse models can be 
matched by allowing for discontinuities in the 
surface multigroup flux at assembly boundaries. 
This is accomplished by a suitable multiplier for 

Reflector outer edge



the neutron flux on each side of a surface, called 
an assembly discontinuity factor (ADF).

The assembly discontinuity factor f is 
defined as the face-averaged flux heterogeneous 
flux  , to the face-averaged homogeneous flux 
 :
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The discontinuity condition at the face between 
neighboring assemblies is written:
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where  is the face-averaged flux on one side 

of the surface and  is thee face-averaged flux 

on the other side; f  and f  are the 
corresponding discontinuity factors.

It can be seen from Eq. 12, that:




 

f
f

 (13)

namely that the face-averaged flux in 
neighboring assemblies is dependent on the ratio 
of the respective assembly discontinuity factors. 

As a result of the imposition of boundary 
conditions, the flux at the assembly boundaries 
will affect the flux distribution inside the 
assembly. It can therefore be expected that in 
highly heterogeneous cores, where the ratio of 
neighboring discontinuity factors deviates 
significantly from 1, homogenized reaction rates 
will differ from reaction rates using a detailed or 
heterogeneous model.

A metric used to gauge the effect of ADF on 
assembly fuel power is the average ratio of ADF 
on all four sides of a fuel assembly to that of its 
neighbors:
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where i and j designate row and column 
respectively. Moreover since the energy release 
from thermal fission is very much greater than 
the energy release from fast fission, one would 
expect the correlation between ),( jiADFR and 
power error to hold only for thermal ADF.
Assembly power in the COMSOL model was 
computed as
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The normalization factor in the denominator of 
Eq. 15,  

core
2211 )(  ff

, which is the average 

power in the core, means that the average 
assembly power is 1.

3. Results and Interpretation

To assess the importance of assembly 
discontinuity factors, they were not used in the 
COMSOL model. The results were compared 
with those from the benchmark reference, 
DeCART [7], PARCS [8] with ADF and with 
PARCS with the ADF option turned off.

In order to accurately describe error 
distribution, two metrics are used for comparison 
of the results; the power-weighted error (PWE) 
and the error-weighted error (EWE). They are 
defined by Eq. (16) and Eq. (17) respectively
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and where calci designates an assembly power 
for either COMSOL or PARCS and refi
designates the corresponding reference assembly 
power from DeCART.

The PWE diminishes the importance of the 
error in the low power region and amplifies the 
importance in the high power region. The EWE 
is not linked to the power distribution but only to 
the magnitude of the error and can therefore 
magnify the effect of large errors in low power 
regions.

The results are shown in Table 1. Fig. 5 and 
Fig. 6 show the assembly power error 
distribution for COMSOL and PARCS with the 
ADF option turned off, respectively.  Power 
errors of this magnitude are generally considered 
unacceptably high.

Fig. 7 shows the assembly power error 
distribution for PARCS when ADF are used. The 
errors are fairly small in magnitude, as indicated 
by the small PWE and EWE and are considered 
acceptable.



Table 1. Eigenvalue and assembly power comparison

Code keff  mk %PWE %EWE

DeCART 1.05852 ref ref ref
PARCS with 
ADF

1.06379 5.27 0.96 1.63

PARCS without 
ADF

1.06501 6.49 4.33 3.99

COMSOL 1.06500 6.48 3.76 11.0

Fig. 5.  Assembly power errors (%) - COMSOL with 
no ADF

Fig. 6.  Assembly power errors (%) - PARCS with no 
ADF

Fig. 8 shows the distribution of the average 
ADF ratio from 1. It can be seen that this ratio is 
highest for peripheral assemblies, which border 
the reflector. Fig. 9 is a plot of the COMSOL 
assembly power error versus 100*)1( ADFR . 
The two quantities are well correlated, with a 
correlation coefficient of 0.9292.

Fig. 7. Assembly power errors (%) – PARCS with 
ADF

Fig. 8.  Distribution of 100*)1( ADFR
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Fig. 9.  Plot of COMSOL assembly power error (%) 
versus 100*)1( ADFR

The keff, appears not to be affected much by 
ADF, with an error of less than 1 mk.  
Noteworthy i s  the fact that the keff, from 
COMSOL and PARCS with no ADF are almost 
identical, with a difference of only 0.01 mk.

4. Conclusions

For highly heterogeneous cores such as one 
with MOX and LEU fuel assemblies, the use of 
techniques that counter the effect of the 
homogenization, such as ADF, is necessary to 
reduce power errors to acceptable levels.  
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