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= Spinal cord injury (SCI) incidence in the
US is approximately 12,000 individuals
annually?

= Compressions causing <35% canal
stenosis are not considered clinically
significant?

= Increased force beyond certain
thresholds or prolonged compression
of the spinal cord result in progressive
ischemia3




Relalive Isehemia

= Most current research focuses on clinical
assessment of spinal cord injury

* The state of spinal blood flow at subclinical
forces has not been well understood




PUrpose

= Characterize the relative extent to which
various modes of compressive mechanical
loading compromise blood flow in the
anterior spinal arterial supply.




Theory & Methoas

= 3-D finite element model of the cervical spinal
cord was developed using Comsol
Multiphysics 4.0a

= Fluid-structure interaction physics module

= Quantifying changes in outlet flow as a result
of compression

= Applied Loads based on the most common
spinal injuries: Anterior, Posterior, Axial

= Changesin Mechanical properties: Spinal cord
elastic modulus, anterior spinal artery elastic
modulus




Theory & Methods (2)

* Modelincludes a 1 cm segment of the cervical
spinal cord, surrounding dura mater, the anterior
spinal artery, and g arterial branches

= Measurements based on bovine and porcine
experiments

= May be extrapolated to human studies




Mode| Deslign

= All materials in the model were
characterized as linear elastic ==
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= Blood was modeled as a
Newtonian fluid with a density
of 1060 kg/m3 and a dynamic
viscosity of ge-3 Pa.s.
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= Blood flow was induced with an
average inlet velocity of 0.3 m/s

= Adaptive free-tetrahedral
meshing




Mechanical Properiies

Cervical
spinal cord

Dura mater
Anterior

spinal artery

Vascular
branches

1-1.5cm (5)
Width: 1.5 cm
Length: 1.0 cm
0.3-0.4(9)

0.3

Diameter: 1.5
(12)

Thickness: 0.25
D:1.4,T:0.2
Diameter: 0.1
Thickness: 0.02

1.4€6 (6)

8e7(10)

1e6 (13)

1e6

0.40(7)

0.49 (10)

0.45 (13)

0.45

1050 (8)

1000 (11)

1000 (14)

1000

4.6
branches/cm
of spinal
cord (5)
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Resulis: Perfusion = Anterior Loading
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Flow Rate (%)

Resulis: Perfusion - pesterior Loading

Posterior Loading
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Resulis: Perfusion = aAxadl Loading

Axial Loading
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Resulis: ASA = Inlet & Ouflet Flow

Inlet and Outlet Flow Response
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Spinal Cord Elastic Modulus (25N)
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Resulis: Alieration in Mechanica
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Limifrarions

= Cannotinduce acute mechanical damage

= Spinal cord vascular auto-regulation is not simulated
» Linear Elastic Material used to model materials

= Lack of a cerebrospinal fluid layer

= Newtonian fluid & steady state flow for blood flow

= (Collateral circulation & posterior spinal arteries were
not included




Discussion

= Anterior loading results in reduced flow and increased
deformation in the ASA.

* may induce maladaptive vascular remodeling
= may disrupt auto-regulation mechanism

= Posterior loading reduces perfusion substantially within the
spinal cord

= |imits blood flow in the arterial branches
= minimally affects the ASA
= may lead to ischemia of the supplied tissues

= Axial loading affects arterial branches predominantly in
proximity of the loading site.

= Decreased blood flow caused by spinal compression may
contribute to progressive ischemia of the spinal cord.




Future Worlk

= Passive and active mechanical testing of
anterior spinal artery

= Ex-vivo testing of compressive loading on
spinal cord

= Update model using constitutive equations
for vascular tissue for quantitative analysis
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