

Albert Torrents a, Jordi Mas b, Francesc Xavier Muñoz a, Francisco Javier del Campo a*

^a Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC) ^b Universitat Autònoma de Barcelona Departament de Genètica i Microbiologia (Barcelona, Spain)

* Corresponding author: javier.delcampo@csic.es

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Respirometer concept description:

Design approach:

- Simplified to a 2D model (not to scale)
- **COMSOL** modules:
 - Laminar flow
 - Diffusion and convection
 - Biochemical reaction
 - Electrode response (Bc and Intop)

Parameters tested

- Thickness and materials of the membrane [25, 75] & 200 µm] [PTFE, PDMS] and channel length [120, 75 mm]
- Organics concentration [30,300,3000 mg/l BOD]
- Flow velocity [Flow x1 = $0.15 \mu \cdot \text{min}^{-1}$] [Flow x1, x2, x3, x4
- O₂ sensor optimization

Fixed parameters

- Bacterial concentration [1·10⁹ cfu/ml]
- Temperature and salinity [20 °C; 5 g/kg]
- Simplified biochemical reaction [Glucose as only carbon source]

Model, mesh and solver:

1) Fluidics (stationary solver)

$$\rho(u\nabla)u - \eta\nabla^2 u + \nabla p = 0$$
$$\nabla u = 0$$

2) Chemical species (O₂ & Organics) diffusion, convection and biochemical reactions (transient solver)

$$\frac{\partial C_{i}}{\partial t} = D_{i} \nabla^{2} C_{i} - u \nabla C_{i} \cdot R$$

$$\frac{dOrganics}{dt} = Bact_{0} \cdot Organics \left\{ \frac{k_{1}(k_{1}Organics + k_{-1})}{k_{-1} + k_{2}O_{2} + k_{1}Organics} - k_{1} \right\}$$

$$\frac{dO_{2}}{dt} = \frac{-k_{1}k_{2}Bact_{0} \cdot Organics \cdot O_{2}}{k_{-1} + k_{2}O_{2} + k_{1}Organics}$$

3) Electrochemical reaction (integration, transient solver)

$$O_{2} + 4H^{+} + 4e^{-} \rightarrow 2H_{2}O$$

$$I = nFD_{O_{2}}w\int_{0}^{X_{e}} \frac{\partial O_{2}}{\partial y} \bigg|_{y=0} dx$$

Model, mesh and solver:

Mesh:

x: regular x-meshing

y: regular but ensuring 5 or more steps in the membrane

electrode: max elem. Size 2·10⁻⁶m; min 2·10⁻⁸m

Number of elements: From 1.4·10⁵ to 4.5·10⁵ depending on the model

75 mm (120 mm for materials)

Solver process:

Stationary solver for fluid flow

Var.: u, v & p

Solver: MUMPS

SD3

Time dependent solver for C&D and reaction (R)

Var.: O₂, BOD & R

Solver: MUMPS

Time: 0-8100 sec.

SD 1, 2 & 3

Integration of O₂ reduction on boundary 18.z $(500\mu m)$ Bc 18

Simulations were run in COMSOL Multiphysics 4.1 running on Linux OpenSuse on a SUN X2200 workstation (64 Gb RAM at 2.2 GHz clock speed dual Quad Core AMD Opteron 2354)

Analyzed parameters: Length (L) and membrane material

Q 1: how long does it take for oxygen to reach saturation throughout?

Q 2: How big is the effect of the material oxygen permeability?

Q3: Is there an optimum channel length?

25 microns 0,60 -0,50 -0,30 0,25 Point 5 Point 6 Point 7 0,15 -Point 11 0,10 Point 17 0,05 -0,00 Time (s) 0,60 d) 0,50 -

100

1000

75 microns

0,60 -

0,55

0,50

0,35

0,30

0,25

0,15

0,10

Point 5

Point 6

Point 7

Point 11

Point 17

0,50 -

0,30

0,25

0.15

0,10

0,05 -

13

16

Point 5 Point 6

Point 7

Point 11

Point 17

Models solved only for fluid flow and C&D Not reaction considered L = 120 mm

You can read the full article at: http://dx.doi.org/10.1016/j.bej.2012.04.014

Point 5

Point 6

Point 7

Point 11

% (6)

1000

Time (s)

Point 6 Point 7

Point 11

Sat

% (6)

0,35

0,30

0,25

0.10

0,05

0,00

Analyzed parameters: O2 & Organics

- Q1: How wide is the range of suitable organics concentrations?
- Q2: How much time do we need to have a result?
- Q3: How does channel length affect analysis time?

Models solved for fluid flow, C&D and biological consume of oxygen L = 75 mm

Time: $2,000 \text{ s} \rightarrow 33 \text{ min}$ $4,000 \text{ s} \rightarrow 66 \text{ min}$ $6,000 \text{ s} \rightarrow 100 \text{ min}$ $8,000 \text{ s} \rightarrow 133 \text{ min}$

O₂ / mol/m³

O₂ / mol/m³

3,000 mg/l

Analyzed parameters: Flow velocity

- Q1: How does flow velocity affect reaction kinetics?
- Q2: How much versatility does flow give against different organics concentrations?
- Q3: Can it be modified to adapt the system to a wide range of organics?

Models solved for fluid flow, C&D and biological consume of oxygen L = 75 mmFlow = $0.15 \, \mu l \cdot min^{-1}$

lnet

Time:

 $2.000 \text{ s} \rightarrow 33 \text{ min}$ $4,000 \text{ s} \rightarrow 66 \text{ min}$

Analyzed parameters: Channel thickness and the electrode

- Q1: How does electrochemical measurement affect the oxygen concentration?
- Q2: Is it feasible to place more than one measuring electrode?
- Q3: What type of response can we expect and what are the key points?

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$

Building the prototype: Main device specifications & constrains

- Greater control of oxygen concentration in the device. (this can be applied to a wide range of elements detectable by electrochemical technics)
- Best electrode protection in terms of electrode passivation due to organic compounds.
- Permits to work with small sample volumes (µ1)
- Several factors permit to reduce analysis time (standard BOD requires 5 days):
 - Allows to use higher microorganisms concentrations (1·10⁹ to 1·10¹¹)
 - Micro-fabrication optimizes oxygen transport and no stirring is required.
 - Small sample in relation to microorganism concentration.
- Overall device of small size: a lab-on-a-chip system.
- Fast sampling and analysis (around 2 hours per analysis)
- Permits on-site analysis.

Building the prototype: Benefits from the simulation and modeling approach

- Several approaches were tested; the model got more refined upon simulations results.
- This simplified model facilitates the development and data interpretation of an experimental system in terms of:
 - Modifying oxygen consumption velocity in complex or different composition samples.
 - Testing different microorganisms concentrations and mixtures.
 - Adapting the model to geometries that improve hydrodynamic performance.
- Simulations qualitatively explain possible complex responses before building the device.

Thank You

Acknowledgements:

The authors acknowledge founding through projects:

- Microresp (PET2008-0165-01)
- Medra (TSI020100-2011-187)
- Bactotox (CTQ2009-14390-C02-01 & CTQ2009-14390-C02-02)
- Tragua (CSD2006-00044)

In addition Albert Torrents is funded by:

FPU scholarship (AP2008-03848)

