

Effect of high frequency field on the electric double layer surrounding a biomolecule in a fluid

Mathieu Riou (Boston University, ENSTA-ParisTech) Carsten Mädler (Boston University) Shyam Erramilli (Boston University) Raj Mohanty (Boston University)

Overview

- Silicon nanowire based biosensor
- Debye screening
- Nernst-Planck equation and Poisson equation
- Frequency dependence
- Conclusion

Silicon nanowire based biosensor

Conductance variation measurement

Carsten Maedler et al "Detection of the melanoma biomarker TROY using silicon nanowire field-effect transistors", (2013), arXiv:1312.7532

Debye screening

Debye length

$$\lambda_D = \sqrt{\frac{\varepsilon k_B T}{\sum_i n_i^0 Z_i^2 e^2}}$$

 n_i^0 Average particle density of the ion i

 Z_i Charge number of the ion i

For a salt solution (Na^+ , Cl^-), for a temperature of 298 K

		_	
Concentration	1	10	150 (blood
$(mol. m^{-3})$			concentration)
Debye length	9.7	3.1	0.79
(<i>nm</i>)			

Geometry

Model

 Model: coupling between Nernst-Planck equation and Poisson equation

$$\begin{split} &\frac{\partial n_i}{\partial t} = \nabla \left(D_i \nabla n_i + n_i \frac{e Z_i D_i}{k_B T} \nabla \phi \right) \\ &\nabla^2 \phi = -\frac{1}{\varepsilon} \sum_i n_i Z_i e \end{split}$$

• Characteristic frequency

 n_i Density of the ion i

- ϕ Electric potential
- D_i Diffusion coefficient of the ion i

$$\omega_c = \frac{D}{\lambda_D^2}$$

Mesh

200 000 elements

Computer memory is an issue

Behavior for low frequency

$$\nabla \left(D_i \nabla n_i + n_i \frac{e Z_i D_i}{k_B T} \nabla \phi \right) = 0$$

Effects on the Debye Layer around the characteristic frequency

Conclusion

- Efficiency of silicon nanowire based biosensor affected by the Debye screening
- Debye screening attenuation for a frequency range weakly inferior to the characteristic frequency
- Further work: simulation of the coupling with the nanowire physics, validation with experiment

Acknowledgment

Raj Mohanty (Boston University)

Shyam Erramilli (Boston University)

Carsten Mädler (Boston University)

