Simulation of Bio-medical Waveguide in Mechanical and Optical fields
Y. Xin¹, A. Purniawan¹, L. Pakula¹, G. Pandraud², P. J. French¹
1. Electronic Instrumentation Laboratory, TU Delft, the Netherlands; 2. Electronic Component, Technology and Materials, TU Delft, the Netherlands

Introduction: There is a possibility of leakage after surgery called anastomosis leakage which can lead to severe complications or even death. This paper presents a freestanding waveguide to detect anastomosis leakage after colon surgery in early stage [1]. The schematic of the freestanding waveguide is shown in Figure 1.

Design and simulation: The freestanding part is a thin membrane consisting of TiO₂ rib and SiN ridge. Figure 2 shows the cross section of the freestanding waveguide. Both surfaces are functionalised with specific antibodies to catch E-coli in the drain fluid. When light propagates through the freestanding region, there will be evanescent wave on both surface (Figure 3) which will interact with the captured E-coli. The freestanding part is considered optically and mechanically to be sensitive and mechanically stable [2-3].

Results: Figure 4 shows the optical distribution on the cross section. Figure 5 shows the inner stress induced deformation. The maximum deformation is 0.21µm whose influence on optical propagation can be neglected.

Conclusions: The feasibility of the freestanding waveguide for biomedical application is demonstrated. Evanescent wave can be used for the purpose of detecting bacteria on the waveguide surface. Considering sensitivity and mechanical property, the final parameters are Hs=200nm, Hr=10nm, Ht=50nm and Wt=3µm.

References: