MULTIPHYSICS MODELING OF A GRAIN STORAGE CHAMBER USING COMSOL SOFTWARE

Presented by:

Paramita Guha

Authors: P. Guha, P. Sharma, V. Malhotra, S. Mishra

Aim

Temperature profiles are obtained so that a proper storage chamber for grains can be designed

Retain the quality of grains

Why this problem is chosen?

- India has become an exporter of good quality food grains very rapidly.
- 2nd largest rice produced and 3rd highest wheat producing country in world
- About 12-16 million metric tons of food grains is lost due to improper storage
- Challenging issues
 - thermal management
 - quality retention
- Aim is to develop temperature profiles of grain storage system based on COMSOL software technique

FACTORS AFFECTING GRAIN LOSSES

- Moisture
- Temperature
- Insects and Rodents
- Quality before storing
- Type of storage bin
- Use of pesticides and fumigants
- General condition of location of storage

MAJOR QUALITY CHANGES DURING STORAGE

- Loss/gain of weight
- Change of physical appearance
- Loss of nutritional/ food value
- Loss of culinary properties
- Total destruction of grains

PARAMETERS

Temperature variations cause natural convection within grain bulk; resulting moisture movement

N₂ & O₂ level

Lower the O₂ or higher N₂ level, higher the mortality of insects

Temperature

Parameters affecting stored grains

Higher the moisture level, more the growth of insects, fungi, mites

Moisture

Higher the rate of CO₂ production, shorter the storage period

HEAT SOURCES

- Changes in storage temperature may occur due to several internal and external reasons.
- Internal sources of heat: respiration of grains, insects, mites etc.
- External sources: changes in ambient temperature, radiation through the bin walls.
- Mathematical modeling and numerical simulations important to predict the temperature & moisture distributions.
- Here only temperature distribution considered
- The transient heat flow due to external sources is modeled using COMSOL multiphysics software.

MODEL OF A STORAGE CHAMBER

Pictorial view of a practical storage chamber

2D Pictorial view of storage chamber

GOVERNING EQUATIONS

The 2D heat model for grains:

$$\rho_{grain}C_{grain}\frac{\partial T}{\partial t} = \nabla(\kappa_{grain}\nabla T) + Q_r$$

• The 2D heat model for head space:

$$\rho_{air}C_{air}\frac{\partial T}{\partial t} = \nabla(\kappa_{air}\nabla T)$$

Boundary conditions:

• For S1 layer:
$$-\kappa_{s1} \frac{\partial T}{\partial n} = h_{s1} (T - T_{s1})$$

• For S2 layer:
$$-\kappa_{s2} \frac{\partial T}{\partial n} = h_{s2} (T - T_{s2}) - q_w$$

• For S3 layer:
$$-\kappa_{s3} \frac{\partial T}{\partial n} = h_{s3} (T - T_{s3}) - q_b$$

TEMPERATURE DISTRIBUTION (3D)

TEMPERATURE DISTRIBUTION (2D)

CONCLUSION

- Modeling strategy of a grain storage system is presented.
- Temperature is taken as variable to be modelled
- The storage system is placed on the ground, boundary s₁ is subjected to only convective heat transfer
- Other boundaries will have both convective as well as radiative heat transfers
- COMSOL software is used for the simulation purpose
- Temperatures at several arbitrarily chosen points are observed
- It is advantageous to have a prior knowledge about the outputs before actually modeling a system

Thanks!