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SCWs are a type of ground heat
exchanger which uses groundwater
as heat carrier fluid;

Mineral scaling may occur in the
heat exchanger, the well and the
geological formation;

Temperature influences the rate of
chemical reactions.




METHODOLOGY - GEOMETRY
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Methodology

Thermo-Hydro-Geochemical (THG) processes are coupled in a 2D axisymmetric
model inspired by the work of Nguyen and al. (2012, 2015).

Parameters Value (m)
Domain length 300
Domain radius 40

Inner pipe radius | 0.070
Outer pipe radius | 0.076
Borehole radius 0.102

Legend:

Groundwater flow model 1: Dirichlet

Heat transfer model
Geochemical model
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METHODOLOGY — MULTIPHYSICS COUPLED MODEL
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The model uses three different physics from the Subsurface flow module and an ODEs
and DAEs module. The governing equations are:

Groundwater flow model: a’p K

—+7- = = ——(Vp + pgVD
(Darcy’s law) pS ot +V-(pv) =0 v pg( p+pgVDy)
Heat transfer model: oT
(Heat transfer in pCy——+pCyv - VT =V - (AVT)
porous media) at

Geochemical model:

or . ,
(Solute transport and ‘PE = V-(DVIl) =V -(@I) + US;r1y
ODEs and DEAs domain)

I' : vector of total activities [-1
Sy : stoichiometric matrix for kinetic reactions [-1
r. : vector of reaction rates for kinetic reactions [-1
U : transformation matrix [-1
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METHODOLOGY — GROUNDWATER FLOW MODEL

The normal velocity of the ascending (v,) and descending (v;) fluid is defined by the two

following equations:

by = _V-(1-B)

1%
Ao T T4

Riser pipe

<—— Borehole wal

when

« B=O0 : all the pumped water is re-
injected in the well

« B=1 : all the pumped water is
discharged outside the well

Methodology
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METHODOLOGY — HEAT TRANSFER MODEL

The heat pump and heat exchanger are not
simulated directly but integrated through:
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METHODOLOGY —TRANSPORT PROCESSES

Transport processes

The nine species involved in the system are grouped in three total activities (/)
according to the Tableaux method (Morel and Hering, 1993), allowing solving only three
transport equations instead of nine:

[y = [H*] — [OH™] + [H,C05] — [CO57] — [CaCO3(qq| — [CaOH™]

[ = [HCO3] + [H,CO5] + [CO%7] + [CaHCOSF] + [CaC03(aq)]

[cq = [Ca?*] + [CaHCOF]+[CaC0s(qq)|+[CaOH]
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METHODOLOGY —TRANSPORT PROCESSES

The matrix U corresponds to:
a, dp, dj ay CZS 6(6 a- C¥8 (046
1 0 0 -1 1 -1 0 -1 -—-11TIy
U=]0 1 0 0 1 1 1 1 0| Tucos
001 0 0 0 1 1 11]Tc

At the equilibrium (Saaltink and al., 1998; Holzbecher, 2012):

U-a—-T=0
with a4 Iy
a=|": = Thcos
Qg [ca

A first set of 3 (N.-N,) nonlinear differential equations is locally solved in an ODEs and
DAEs module over the domain to simulate the transport processes and to link the
transport with equilibrium and kinetic reactions.
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METHODOLOGY —REACTION KINETICS

Reaction kinetics K

1
CaCOzcs) + H* © Ca** + HCO3
1

k
CaCOs + HyCO3 & Ca?* + 2HCO3
K
k

CaCOss, + H,0 l<<—‘°’> Ca®* + HCO; + OH™

-3

The direct reaction rate constants are calculated as follow (Plummer et al., 1978):

log ky = 0.198 — (444/T) log ks = —5.86 — (317/T) T< 25°C
log k, = 2.84 — (2177/T) log ks = —1.10 — (1737/T) T > 25°C
The reverse reaction rate constant can be defined as follow:

k.
lc'ij - J
Keq,j
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METHODOLOGY — REACTION KINETICS

The reaction rates of the three kinetic reactions can be defined as follow:

)

1 =kyagr — ko agqer AHcoz

5 _ 2
Ry, =k, aH,co; — k_y - acqe+ AHcoz

Rz = k3 ap,0 — k3 agge+ QHcoy * ®oH~

The Kinetic reactions are integrated in the model through a reaction term in the Solute

Transport module as follow:

U-S;(-rk=

—R; — R, — R,
R+ R, + R;
R, + R, + R;

where
a, Qap a3 a4 g Qg A7 Qg
1 -1 -1 0 O O O o
S.=10 -2 -1 0 1 0 O O
O -1 -1 -1 0 O O O

Methodology
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METHODOLOGY — EQUILIBRIUM REACTIONS

Equilibrium reactions

H* + OH™ & Hy0 Ca?* + HCO; & CaHCOF  Ca®* + C035™ © CaCO3aq)
H* + €05~ & HCO;  H' + HCO3 < H,CO0;3 H* + CaOH* & Ca®* + H,0

At the equilibrium (Saaltink and al., 1998, Holzbecher, 2012):

Se-loga—logK =0

with

@ a; a3 A as Qe a; ag Qg

1 0 O 1 0 0 O 0 01N

1 -1 0 0 0 1 0 0 O0|r Ky

g0 1 1 0 0 0 -1 0 ofr K=
e"11 1 0 0 -1 0 0 0 o0|r, Ke

0 O 1 0 0 1 0 -1 0]rg

1 0 -1 0 0 0 o 0 11rg
A second set of is locally solved in an ODEs and

DAEs module over the domain to simulate the equilibrium reactions.
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SUMMARY
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The system of 9 equations (one for each reaction) and 9 unknown (one for each
species) is solved at each point of the domain through an ODEs and DAEs module.

The first set of 3 (N.-N,) nonlinear differential equations is solved to simulate the
transport processes and to link the transport with equilibrium and kinetic reactions:

U-a—-T'=0

The Kkinetic reactions are integrated in the model through a reaction term in the
Solute Transport module:

—Ry — Ry — Ry
U'S;('rkz §1+§2+ﬁ3
R, +R,+R;

The second set of is solved to simulate the
equilibrium reactions:

Se-loga—logK =0

Methodology




RESULTS

Simulation of a 1-year typical operation (V =3e-3m3/s, initial pH=7 and initial
PCO,=4.1e-2 atm):
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RESULTS

The overall rate of precipitation and dissolution of calcite is given by (Plummer and al., 1978):

~

_ 2
R =kiag+ + kyap,co, + k3,0 — Kk 1Qcg2+Aycos; — k—2“0a2+“Hco3‘

— k_s@cq2+Aycos; Aon-

-6

Y 10
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Ig 0 \.L-R:_}:jn
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RESULTS

Rate of reaction of calcite (mg/(cm?2-s)) after 200 days of simulation without bleed and
with 15% of the pumped water discharged outside the well:
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CONCLUSIONS

1. The developed model allows simulating the thermo-hydro-geochemical processes in a
SCW and the geological formation.

2. The results show that:
1. Mineral scaling in SCWs should be considered;

2. In the well, the concentration of Ca2* is inversely proportional to the temperature
and thus calcite precipitation is likely to occur in summer;

3. The bleed tends to stabilize the parameters and thus, limit the risk of precipitation
of calcite.

Conclusions
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QUESTIONS

http://69.18.148.120/~/media/Files/resources/oilfield_revie
w/ors99/aut99/fighting.pdf
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ANNEX 1— LUNARDINI (1981) MODEL

Lunardini (1981) model
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ANNEX 2 — TABLEAUX METHOD

Tableaux method (Morel and Hering, 1993) with H*, HCO5;- and Ca?*:

Species Combination H COTSC;:NS
H* GOR 1 0
HCO3 (HCO5), 0 1
Ca%* (Ca?*), 0 0
OH™ (H20)1(H) 4 -1 0
H,CO, (HCO5),(H"), 1 1
C0%- (HCO5),(H*) 4 -1 1
CaHCO% (Ca2*)y(HCOy), 0 1
CaCO3z(aq) (H*)_,(HCO3%),(Ca2*), -1 1
CaOH* (H20); (H").1(Ca*"), -1 0

Ca

1

[y =[H*] — [0H™] - [CO37] + [H,CO5] — [CaCO3(qq| — [CaOH™]

Ie

[cq = [Ca®*] + [CaHCOF]+[CaC03qq)]
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[CaHCOZ] + [€COZ7] + [HoCOs] + [HCO5] + [CaCO3(aq)]
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ANNEX 4 — RESULTS

THG model - parameters

Chemical model

Groundwater flow and heat transfer model

Parameters Fluid Soil Pipe
Density (kg/m3) 1000 2700 1300
Normal velocity of the fluid inner 7.24-10°7 - -
(m/s)
Normal velocity of the fluid outer 7.24-10°7 - -
(m/s)
Porosity - 0.1 -
Pumping rate (I/min) 151 - -
Hydraulic conductivity (m/s) - 2-10°6 1-10-°
Thermal conductivity (W/K/m) 0.6 2.5 0.0974
Volumetric heat capacity (J/K/kg) 4200 800 1200
Borehole length (m) 300
Borehole radius (m) 0.102
Inner pipe radius (M) 0.07
Outer pipe radius (m) 0.076
Soil radius (m) 40

Parameters | Initial values
pH (-) 7
PCO, (atm) 4.1 - 1072
[H*] 10-PH
[HCO5] K - [H;COs]
[H*]
[Ca?*] Ksp
[CO37]
[OH"] Kw
[H*]
[H,COs] Ky - PCO,
(€021 K, [HC03]
[H*]
[CaHCO.*] [Ca2*] - [HCO3]
Kcancos
[CaCOzaq)l [Ca®*] - [CO37]
Kcacos(aq)
[CaOH"] Kcaon - [Ca®*]
[H*]
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