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Abstract: COMSOL is used for obtaining the 
quantum mechanics wave function Ψ(x,y,z,t) as a  
solution to the time dependent Schrödinger 
equation. The probability determination of a 
particle being at a spatial point can be treated by 
a) the “matrix mechanics formulation” or b) the 
“Schrödinger wave function formulation”. The 
latter approach is used herein, because it 
involves solving field partial differential 
equations, thus is adaptable to COMSOL.  
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1. Introduction 

The purpose of this paper is to illustrate the 
use of COMSOL for obtaining the quantum 
mechanics wave function Ψ(x,y,z,t) (represents 
matter waves) as a solution to the time dependent 
Schrödinger equation. In quantum mechanics, 
solutions for the probability of a particle being at 
a particular point in space are usually treated 
through a) the “matrix mechanics formulation” 
originated by Werner Heisenberg or b) the 
“Schrödinger wave function formulation” 
originated by Erwin Schrödinger. The latter 
approach is the one used herein, mainly because 
it involves solving field partial differential 
equations, and therefore is adaptable to 
COMSOL. Once having  determined the wave 
function Ψ(x,y,z,t), it can be normalized and then 
used to compute the probability of a particle 
being in a specific zone within the computational 
spatial field under consideration. Two example 
problems are solved to illustrate the procedure 
for solving Schrödinger's equation with 
COMSOL. The first is a simple 2-D bar used for 
testing the FEM accuracy of the time dependent 
wave propagation of Ψ. At atomic scales, the 
location in space of entities such as electrons, 
have dual behavioral  characteristics, where they 
act both as a particle and a wave [1]. The second 
example illustrates this wave like behavior by 
employing a barrier model with two embedded 
slits. When stream of particles (e.g., electrons) 

impinges on the two slit barrier, experiments 
reveal  that the location of the particles hitting a 
screen located on the barrier's back side appear 
in bands [2]. Depending on the screen location, 
the maximum number of hits in a band does not 
necessarily line up with the location of the slits 
as expected if the impinging electrons were 
acting according to regular Newtonian particle 
trajectories. A COMSOL solution to the time 
dependent Schrödinger's equation predicts a 
similar result, where the magnitude of the 
complex wave function squared, (i.e., probability 
density ≡ |Ψ|2), also appears in similar bands, 
where the ʃ |Ψ|2 dA over finite area zone ΔA, is 
directly related to the probability of a particle 
being located within  ΔA. 

2. Governing Equations 

The governing equation for the behavior of a 
particle of mass m in the presence of a potential 
field V, is represented by the time dependent 
quantum mechanics Schrödinger equation (with 
wave function Ψ(x,y,z,t) as the primary 
dependent variable) and is given by [1]: 

with h =h/(8π), where h is Plank’s constant, and i 
=√(-1) . In the rest of the paper we consider only 
non-relativistic free particles, where V=0.  

3. Method 

The governing Eq.(1) is solved explicitly in 
the time domain by the FEM method in 
COMSOL, subject to time harmonic drivers 
which vary as exp(-iωt). Schrödinger's equation 
has been solved using COMSOL in the past, but 
for time independent forms of Eq.(1). COMSOL 
has a “built in  Schrödinger Equation Interface”, 
however it is for eigenfunction time independent 
forms and therefore not applicable here. The 
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COMSOL users manual and previous COMSOL 
conference archives, also have several examples 
of the time independent application, however 
there appears to be none that treat the time 
dependent form of the solution. In this paper, the 
transient study type is employed within the 
General Form PDE section of the Equations 
Based Modeling. An incident plane wave of the 
form Ψ= ΨoExp(ikx-iωt),  with Ψo=1.0 , is 
generated by driving the left end face of the 
model with Ψ= ΨoExp(-iωt). Further, an 
absorbing boundary condition is developed in 
order to terminate the mesh at the extreme right 
end of the model and is implemented via the 
flux/source settings using the boundary 
absorption /impedance term. 

4. Theory 

Wave solutions of Eq.(1) in the x direction 
are sought of the form:  

Equation (2) is substituted into Eq.(1) and 
solving the resulting second order o.d.e. yields:  

where the plus sign is used for waves 
traveling in the +x direction and Ψ0 is an 
arbitrary constant amplitude. Similarly, a wave 
traveling in an arbitrary unit vector direction η 
(bold variables within the text denote vectors 
hereafter) is given by: 

where wave number vector k and position 
vector r are given by: 

with (ex, ey) denoting conventional  Cartesian 
coordinate unit vectors (i, j). When the wave 
impinges upon a domain boundary surface 
(having a unit outward normal n to the surface), 
a wave absorbing boundary condition is 
considered later and the effect of η not being 
inline with n is discussed. 

The phase velocity of the traveling wave is 
given by Eq.(7) and since the phase velocity 
depends on frequency, these traveling waves are 

dispersive. This is in contrast to the classical 
non-dispersive wave equation (e.g., linear 
acoustics) where the phase velocity is vφ=ω/k=c, 
with c a constant constructed from the medium 
bulk modulus and density . 

4.1 Model Driver 
An incident plane wave of the form Ψ=  

ΨoExp(ikx- iω t ) , wi th constant Ψo, is 
implemented by driving the left end face of the 
model with: 

The k-ω relation Eq.(3) is dispersive, 
therefore we do not want to introduce any 
unwanted frequency components (beside the 
drive ω) during the startup of the wave 
generation. In order to avoid the suddenly 
applied real part of the driver at t=0, the 
amplitude in Eq.(8) is exponentially  increased 
from a small fraction of Ψo (i.e., ε),  to 1.0 over 
time span tc: 

The values of  Ψo=1.0, tc =2T (2 time cycles) 
and ε =.05 were used in the examples to follow, 
where T corresponds to one cycle (T=2π/ω). 

4.2 Absorbing Boundary Condition 
When the boundary is driven with Eq.(8), the 
outward traveling going wave will eventually 
reach a boundary surface of the FEM model. A 
simple plane wave impedance type boundary 
condition is used at that surface of the form: 

where n is the unit outward normal to the  
surface. This type of boundary condition is 
usually used for steady state (time independent) 
problems; however, when the response frequency 
content contains a dominant driver ω content 
(e.g., Figure 2a inset), and if the field traveling  
wave is close to being  normal to the surface, 
then this condition works adequately.  
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Plane Waves:  For example, if a plane wave 
traveling in the direction η impinges on a surface 
with unit normal n, the fulfillment of Eq. (10) is 
tested by substituting Eqs.(4), (5) and (6) into 
boundary condition Eq.(10) to get: 

Thus Eq.(11) suggest that making the 
replacement of k→ kcos(φ) on the r.h.s. in Eq.
(10), would improve the quality of the absorber 
but would require knowing the η direction of the 
plane wave. A graphical illustration of the η, n 
and φ are illustrated in Figure 1 (wave fronts 
emerging from slits are actually curved), where 
for the “base case” geometry depicted, cos(φ) 
varies from 1.0 at the poles to a worse case value 
of  √(1-(S/2R)2)=0.92 opposite the slit (see 
Figure 5 for S and R definitions). The worse case 
value is 0.96 for the bigger Figure 5d model 
since R is 7/5 times larger. 

Cylindrical Waves: Consider a cylindrical 
wave originating from the origin at point A in 
Figure 1.We seek solutions of the form: 

   

and upon substituting Eq.(12) into Eq.(13) 
(i.e. the cylindrical coordinate form of Eq.(1) ) 

one obtains a Bessel differential equation  

with solution given by: 

The H0(1) is a zero order Hankel function of the 
first kind and is approximated by the above 
exponential form for large kr>>1. Therefore 
Equation (15) behaves like a decaying plane 
wave far enough away from the origin (this is 

where the absorbing boundary condition will be 
used). The satisfaction of the absorbing boundary 
condition Eq.(10), is checked by first noting: 

and then substituting second of Eqs.(15) and 
Eqs.(16) into Eq.(10) to obtain: 

The Eq.(10) is nearly satisfied, where the second 
term in parentheses is close to 1.0 for large kr 
arguments. For example problems considered 
later, kr=10π at the outer mesh boundary, 
therefore 1/(2kr)=1/(20π)=.0159 and therefore 
the second term in parentheses is 1+ 0.0159i .  

4.3 Probability Computation 
The wave function Ψ(x,y,t) can be used to 

compute the probability of a particle being in a 
particular area zone of space for 2-D models. 
However the as is wave function coming out of 
the FEM solution has to be normalized so that 
probability of a particle being in the total spatial 
domain of the problem description is 1.0 . The 
normalized wave function Ψn is obtained by first  
multiplying the unnormalized wave function Ψ 
by a yet to be derminined normalization factor 
denoted by Λ [4], i.e., 

Next the normalized probability density is 
integrated over the total spatial domain AT (the 
zone where it is possible for the particle to be 
present ), and then set equal to 1.0, thus  

Equation (17) is substituted into (18) and             
solving for  Λ2 gives Eq.(19).  
    The probability PX  of a particle being inside   
some sub area zone AX within the total area AT is 
then given by Eq.(20). The evaluation of Λ is 
difficult because the full field of Ψ(x,y,t) is not 
known beyond the artificial absorbing boundary. 

( , ) ( ) ( )expr t r i t~W W= -| ( )12

r r r ia t
1 02

2

2
2

2
2

2
2W W W+ + = ( )13

2
dr

d
r dr

d a1 0
k

2

2
2~W W W+ + =

| | |P ( )14

( ) ( ) / ( / )
( )

( , )
( )

exp
exp

exp

r A H kr A i
kr
ikr

r t
kr

ikr i t

2 4( )
0
1

0

0

. r r

~

W

W W

= -

=
-

W

|
1 2 344444444444 44444444444

v v
( )15

( , , ) ? ( , , )ik x y t r
x y

kr
i ik x y t1 2

; kr

2

2 2

1 1 1

W W
+

+ =

22.

T SY X
1 2 344444 44444 1 2 344444 44444

( , , ) ( , , )x y t x y tnW KW= ( )17

( )18( , , )x y t dA 1n

A

2

T

W =##

( )

r x y n e
x y

xe ye

x e y e

r
x y

x y

2 2
2 2

d 2
2

2
2

/

W W W

= + =
+
+

= +

( )16
( , , ) { } ? ( , , )

( ) ( )cos cos

ik x y t n n ik x y t

n n n n
.

( )cos

x x y y

x x y y

1 0

:

h h

h h h h z z

W W+ =

= + = =
z

1 2 34444444 4444444

1 2 3444 444

( )11

Excerpt from the Proceedings of the 2015 COMSOL Conference in Boston



Instead of PX, the relative probability between  

two neighboring zones is desired. Later we 
consider two area zones AX=AM, and AX=AU 
which correspond to one mid zone opposite the 
slit and the other upper zone above the slit. The  
relative probability ratio RU/M is defined by :  

where now the normalization factor Λ2 cancels 
out and therefore is not needed for the RU/M 
relative computation. For example if  RU/M  >1, 
these means that it is more probable to have a 
particle located just to the side of the slit than 
directly in line with the slit, inferring diffraction .  

5. Numerical Model 

The primary problem solved herein is the 2 D 
field response to an incident plane wave Ψi(x,y,t) 
function passing down a wave guide and then 
passing through two slits as shown in the upper  

     Figure 1. Upper Half FEM Model. 

half of the two slit FEM model of Figure 1. Only 
half of the full two slit problem needs to be 
modeled because of an existing plane of 

symmetry at cut y=0. For the presentation of 
results, the full model (i.e., both upper and lower 
half are displayed using mirroring options). The 
example problems were all run using the 
“General Form PDE”, with a “Time Dependent” 
study selection. The PDE Eq.(1) parameter of  
a=1.7268 s/cm2  is used,  with incident wave 
parameters of f=3.2953x107 Hz , Ψo=1.0,  and tc 
=2/f in driver Eqs.(8) and (9) . 

5.1 Boundary and Initial Conditions 
Boundary Conditions: 

Rigid boundary condition ∂Ψ/∂y =0 is used on 
the horizontal walls of the front end wave guide, 
on the slit tunnel walls, and on the plane of 
symmetry. Rigid boundary condition ∂Ψ/∂x =0 is 
used on the back side vertical wall separating the 
incident wave region and the transmitted side 
region. An absorbing boundary condition given 
by Eq.(10) is used on the surfaces shown in blue 
in Figure 1. The incident side vertical wall is 
made absorbing so that back reflections off this 
wall do not travel back to the drive surface. 
Equation (10) is implimentated using the Flux/
Source setting with COMSOL input parameters 
g=0 on the boundary flux term and q=ik on the 
boundary absorption/impedance term. The 
incident side vertical wall is parallel to the 
incoming wave front, therefore no cos(φ) 
correction would be needed. As shown in Figure 
1, the slit is not at the origin of the circular 
boundary arc, therefore cylindrical waves (which 
start to look like decaying planar waves away 
from the slit ), will not impinge exactly normal 
to the surface, and therefore there will be some 
absorption error introduced (like in Eq.(11) ) 
which will introduce some small error depending 
on the size of φ. The FEM solutions are 
terminated in time before this error has any 
significant effect on the field solution and 
construction of interference patterns.  This is an 
advantage of solving the problem in the time 
domain rather than as a steady state problem 
where the absorbers have to work over all time. 

Initial Condition: 
The PDE is first order in time thus,  there is only 
one initial condition, namely that of Ψ(x,y,0+)=0. 

5.2 Model Length and Time Size 
    Time and length quantities are very small at 
the atomic level. Therefore in the presentation of 
results , length quantities are given as a multiple 
of the incident traveling wave length λ=2π/k and 
time is given as a multiple of the incident wave 
period  T=2π/ω . Therefore  non-dimensional  
independent variables of χ1=x/λ, χ2=y/λ, and  
τ=t/T are used to plot results. Although not used 
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to generate the results presented herein, one 
could substitute these normalized variables into 
the free particle form of Eq.(1) to obtain ∂2Ψ/∂χ1

2  
+ ∂2Ψ/∂χ2

2 +i2π ∂Ψ/∂τ = 0 , and then work with 
this non dimensional PDE where model sizes 
and time scales would be nice  size numbers. The 
harmonic part of the end driver would then be 
proportional to exp(-i2πτ). 
    The base case model shown in Figure 1 has a 
waveguide inlet length of 2λ (including the small 
slit length), where  the radius of the backside 
chamber of R=5λ. The slit aperture opening 
(width) is W = λ/2 and the pitch (centerline to 
centerline of the slits) is S = 4λ . Variations on 
these parameters are considered in the results. 

6. Results 

A simple waveguide verification model is 
first solved, followed by the base case double slit 
model with additional variations on basic model 
parameters.These models are solved using the 
base case parameters given in section 5.0 .  

6.1 WaveGuide Validation  
The purpose of this example is to have an 

independent cross check on the COMSOL 
solution for the type of time dependent 
Schrödinger equations considered in this paper. 
The model (driven with Eq.(8) ) is a variation on 
the front end of the wave guide Figure 1 
example, except at the termination right end of 
the model there is no slit and the entire back 
boundary is terminated with Eq.(10) . The model 
(see Figure 2c inset) is of length L=2λ and width 
L/10 (the response is really 1-D so the width 
could be made narrower than the base case inlet, 
where 2-D elements are used to simulate what is 
employed  in the base case two slit model). 
Αn independent “exact solution” to this same 
problem is obtained by using Laplace 
transforms. The solution is exact up until we 
need to take the inverse Laplace transform. At 
that point there does not appear to be an exact 
inversion and numerical inverse algorithms are 
employed. First take the Laplace transform, £[ ],  
of the 1-D (free particle form, V=0) of Eq.(1) 
with respect to t, where the transformed t  

variable is the conventional s parameter and the 
transformed wave function variable is denoted 
by lower case ψ(x,s). This o.d.e. (with int. cond.  
Ψ (x,0+)=0) has a solution given by Eq.(23).  

The arbitrary constants C1 and C2 are solved 
by substituting Eqs.(23) into the Laplace 

transform of the boundary conditions given by 
Eqs.(24), giving two linear algebraic equations 
for C1 and C2. Equations (24) contains s, 
therefore C1 and C2  will explicitly depend on s. 
Finally, the solved  C1(s) and C2(s) are inserted 

into Eq.(23) and then inverse Laplace 
transformed to get  to get the final solution: 

Until now all the expressions, with the  
help of symbolic programming, are analytical in 
form. Thus the argument inside £-1[ ] of Eq.(25) 
is explicitly known in terms of s, however 
analytically evaluating the inverse Laplace 
transform is extremely difficult, and numerical 
techniques [3] are used instead to obtain the last 
phase of the solution. It is labeled as an “exact 
solution”, but actually it is a quasi exact solution. 
   The model end driver (i.e., Eq.(8) ) used in all 
the FEM runs is shown in Figure 2a  for Ψ vs t/T  
at x/λ =0 (the shape of the driver’s Fourier 
transform frequency content amplitude, | Ƒ(Ψ) | 
vs ω, is shown in the inset, where the dominant 
spike is at the drive frequency). The FEM driver 
and the Laplace transform driver are essentially 
the same except COMSOL uses a small S shaped 
smoothing rise time zone over a time span of 
0.1T.  Thus the FEM startup is from zero instead 
of from εΨo. 
  There is good agreement between the exact 
solution vs the FEM solution in Figure 2c for the 
complex  Ψ vs  x/λ at  τ=t/T=1.5 as the  solution 
gradually builds, heading towards the desired 
ΨoExp(ikx-iωt).  The Figure 2d plot shows the 
solution at a later time of t/T=4.0, where at this 
point the desired unit amplitude for Ψo and the 
peak to peak wavelength Δx/λ=1 is reached. This 
also illustrates the absorbing boundary condition 
at the end of the bar is working since no 
reflections are coming back. Figure 2b illustrates 
the response vs τ=t/T and shows how the 
response has progressed to a fixed observer at 
located at  x/λ = 1.       
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6.2 Two Slit Base Case Solution 
   In Figure 3, a sequence of three time snapshots 
is illustrated in sub Figures 3a) τ=t/T=3.0, 3b) 
τ=4.5 and 3c) τ=6.0. The real part of  Ψ is plotted 
in order to give a better idea of how the 
diffraction is being set up as time evolves. The 

Figure 2. Waveguide FEM-Exact Comparison 

last sub Figure 3d is also at τ=6.0, however here  
|Ψ|2 is plotted and a banded interference pattern 
evolves of the type that are observed 
experimentally [2]. A plot of |Ψ|2 vs vertical 
coordinate y/λ at cut  x/λ=1.88 given in Figure 
4a and 4b (for the base case model R=5λ, and for 
a corresponding bigger R=7λ model), show the 
bands more clearly. The location of the slice is 
shown by the red dashed line in Figure 3d and 
5d. The location of the centerline of the two slits 
are shown by the horizontal dashed lines in 
Figure 4. The value of |Ψ|2 is lower directly 
opposite the slit as say compared to values either 
directly above or below the slit, thus illustrating 
the wavelike diffraction of the wave function.            

The  probability of a particle being in one of the 
four  probability zones of size ΔA=λ/4 x λ/4 is 
addressed, where the right side of the box shape 
zone is located at x/λ=1.88 which corresponds to 
the Figure 3d red dashed line. This is                   

Figure 3. Base Case Two Slit Solution At Fixed Times 

accomplished by evaluating ʃ|Ψ|2 dA over each 
of the four probability zones shown in Figure 3d 
where the 4 red boxes are referred to as Upper, 
Mid, Lower and Plane of Symmetry. The mid  

Figure 4. Section Cut, |Ψ|^2 vs y/λ @ x/λ=1.88  : a) 
Base Case Model R=5λ ,  b) Big Model R=7λ 

zone is located in line with the slit and it is 
therefore of interest to compute the probability of 
being in this “in-line mid zone” relative to 
neighboring zones. Upon applying Eq.(21) (for 
the probability ratio) to the computed field, it is 
observed that it is RU/M =1.74 times more  
probable that a particle is found in the upper 
zone than in mid zone; RL/M =1.57 times more  
probable that a particle is found in the lower 
zone than in mid zone , and RPS/M =.925 times 
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less  probable that a particle is found in the plane 
of symmetry zone than in mid zone. Placing 
these 4 probability zones at other locations, say 
farther out at a value of  x/λ=2.87, results in the 
opposite situation where there is a greater 
probability the particle is in the mid zone, than  
either above or below it. 

Figure 5. Sensitivity to Slit Pitch S, Aperture W and 
Model Size R 

    Lastly, for a given ω driver frequency, Eq.(3)  
gives the wave number k (and hence wave length 
sized by λ=2π/k) of the incident plane wave. This 
is the k used in boundary condition Eq.(10) for 
all model absorbing surfaces. This true length λ 
(e.g., drawn to scale) is superimposed on the 
peak to peak response on the incident side as 
shown in Figure 3b and thus good alinement is 
illustrated. A portion the plane wave has passed 
through the slit, and emerged on the back side as 
a cylindrical traveling wave. The spatial wave 
length still appears to be approximately λ as 
shown by the true length λ marker superimposed 
on the back side peak to peak curved wave 
response in Figure 3b where again good 
alinement is illustrated. This implies the outer 
boundary absorber sized by k=2π/λ does an 
adequate job. 

6.3 Base Case Variations 
The sensitivity of the solutions to the slit 

pitch S, aperture W and Model outer radius R is 
illustrated in Figure 5 where comparisons are 
made between the base case result in Figure 3d 
and those in Figure 5. The base case S= 4λ, has 8 
dark blue minimum bands, but for smaller pitch 
S= 3λ, there are 6 bands and for bigger pitch S= 
5λ, there are 10 bands. Regarding aperture 
variation, the bigger opening W= .75λ still has 8 
minimum bands but they are less sharp than the  
W= .5λ base case. Finally the effect of model 
size on the base case is considered by increasing 

the base case model radius of R= 5λ to a bigger 
R= 7λ value. The big model size of Figure 5d 
(rotated 90 degrees to fit in the Figure) and base 
case size 5c are shown to the same scale so that a 
relative size visual illustration of the bigger 
model is achieved. The big model inlet wave 
guide is L=3λ compared to 2λ in the base case 
model. The first and eighth minimum bands 
show up more clearly in the bigger model, but 
overall comparing the Figure 3d base case and 
Figure 5d big model, the results are very similar, 
therefore indicating the model size of the base 
case is adequate. The big model has run a longer 
time (9T vs 6T), therefore upon comparing 
Figures 4a and 4b, the bigger model is closer to 
reaching a steady state condition (the two curves 
plotted per graph are for two neighboring times 
separated by 1/2 period in time), where the 4b 
pair of curves overlay closer than the 4a pair. 

7. Conclusions 

COMSOL can be used to solve the  
Schrödinger Equation in the time domain, using 
the General Form PDE implementation. The 
agreement between the exact vs FEM solutions 
for simple 2-D bar examples with absorbing 
boundary conditions to terminate infinite 
domains, was shown to be very good.  Solutions 
to more complex problems like the incident 
plane wave upon a two slit barrier, produced 
diffraction patterns showing  bands of null zones 
due to wave destructive interference. These null 
zones are not unlike the ones observed 
experimentally when a steady stream of electrons 
impinge upon a two slit barrier. The evaluation  
of the COMSOL solution for the probability of  a 
particle  location, showed that depending on the 
standoff distance from the back side of the 
barrier, it could be more likely to have the 
particle located off to the side of the slit 
projection, than in line with the slit projection.  
This diffraction interference illustrates the wave 
like behavior of particles at the atomic scale. 
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