Extraction of Electrical Equivalent Circuit of One Port **SAW Resonator Using FEM-based Simulation** A. K. Namdeo, H. B. Nemade

Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

Introduction

A method of extraction of electrical equivalent circuit of a one port surface acoustic wave (SAW) resonator from the results of simulation based on finite element method using COMSOL Multiphysics is presented

A one port SAW resonator consisting of large number of periodic IDT electrodes fabricated on a piezoelectric substrate is incorporated in the simulation

equivalent circuit of a SAW resonator comprises of motional The resistance, capacitance and inductance connected in series, and static capacitance in parallel

Modeling in COMSOL Multiphysics³

Geometry Settings:

- 2D plane geometry of a one port SAW resonator with one period of IDT electrode used in simulation is shown below
- The dimensions of the piezoeletric substrate and IDT electrodes are 16 µm $(1 \lambda) \times 160 \mu m$ (10 λ) and 4 $\mu m \times 0.2 \mu m$, respectively

Sub-domain Settings:

The substrate used for the simulation is YZ-cut LiNbO₃

SAW Devices:

Boundary Settings:

- Boundary in the top of the substrate is given as $\mathbf{n} \cdot \mathbf{T} = 0$.
- The bottom surface is fixed as u = 0
- Periodic boundary conditions^{4,6} are applied as follows
 - $\Gamma_{L}(u,v,V) = \rho \Gamma_{R}(u,v,V)$
 - $\rho = (-1)^n$, $n = 2a/\lambda$

Mesh Settings:

• Extremely fine mesh, 32 elements per λ , is used in simulation

Results of Simulation in COMSOL Multiphysics

SAW convolver

Interdigital Transducer (IDT):

- ✓ Co-planar metal comb shape electrodes¹
- ✓ Deposited on piezoelectric substrate
- ✓ Converts electrical energy into mechanical energy and vice versa SAW velocity
- **SAW frequency** $f_{\Delta} = v/\lambda$ SAW wavelength $\lambda = 4d$

Constitutive Equations²

Stress tensor component

Electric displacement component $D_{i} = \sum \varepsilon_{ij}^{s} E_{j} + \sum \sum e_{ijk} S_{jk}$

SAW sensor

- C_{iikl}^{L} = stiffness tensor for constant electric field
- $S_{kl} = \text{strain tensor}$
- e_{kii} = elastic constant or piezoelectric tensor
- c = electric field
- = electric displacement
- \mathcal{E}_{ii}^{s} = permittivity tensor for constant strain

Electrical Equivalent Circuit⁵

Surface profile of total displacement at f_r

15 ▼1.89×10⁻⁸

10

- The calculated value of lumped parameters are shown in figure (d)
- The value of motional resistance is very small *i.e.* 77.29 n Ω because the damping is not considered in the simulation of one port SAW resonator
- The admittance value shown in figure (a) and (b) is high due to low damping in the substrate & infinite aperture of IDT electrodes
- The calculation of electrical equivalent circuit parameters is useful in the

SAW resonator with large number of IDT electrodes

Electrical equivalent circuit parameters are calculated from the following equations

Quality factor

SAW phase velocity

 $R_m = G^{-1} \Big|_{f=f}$

$Q_{r} = \frac{f_{r}}{\Delta f} = \frac{\omega_{r}L_{m}}{R_{m}} = \frac{1}{\omega_{r}C_{m}R_{m}}$

 $\omega = 2\pi f$, Angular frequency $G = Conductance peak value C_0 = Period of IDT electrodes$

 $f_r = \text{Resonance frequency}$ t_{ar} = Anti-resonance frequency $L_m =$ Motional inductance C_m = Motional capacitance R_m = Motional resistance

Electrical equivalent circuit

design of matching circuits for SAW devices

References

- 1. D. Royer and E. Dieulesaint, *Elastic Waves in Solids II –* Generation, Acoustic-optic Interaction, Applications, Springer-Verlag, New York (1999)
- 2. D. Morgan, Surface Acoustic Wave Filters with Applications to Electronic Communications and Signal Processing, Elsevier, UK (2007)

3. COMSOL Multiphysics Users Guide Ver. 3.4, COMSOL, Inc., Burligton (2007)

- 4. Y. Kagawa and T. Yamabuchi, Finite element simulation of a composite piezoelectric ultrasonic transducer, IEEE Transactions on Sonics and *Ultrasonics*, **Volume SU-26**, no. 2, 81–88 (1979)
- 5. K.-Y. Hashimoto, Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation, Springer-Verlag, New York (2000)
- 6. A. K. Namdeo and H. B. Nemade, Simulation on effects of electrical loading due to interdigital transducers in surface acoustic wave resonator, Journal of *Procedia Engineering*, vol. 64, 322–330 (2013)

Excerpt from the Proceedings of the 2015 COMSOL Conference in Pune