

MATHEMATICAL MODELING OF GLUCOSE RESPONSIVE HYDROGELS

Tanmay Mathur^{1*}, Aditya Pareek², Venkataramana Runkana²

¹Dept. of Chemical Engineering, IIT Delhi ²Tata Research Development and Design Centre, Pune

INTRODUCTION

- For any diabetic patient, Insulin can be injected inside the body using two prominent methods: Injections & Insulin Pumps
- Glucose levels need to be closely monitored either using a glucose meter or a CGM sensor to decide the amount of insulin to be delivered
- A Doctor needs to closely monitor the patient conditions to avoid hyperglycemia and hypoglycemic events
- A novel delivery system is required that can **sense** and **deliver** insulin

INTRODUCTION

Insulin dosages are of two types: Basal and Bolus

A general guideline required for insulin infusion is:

- 0.2 IU/Kg/day of basal insulin
- 0.05-0.1 IU/Kg of insulin before consuming meal

- Type 1 diabetes patients require 3-4 injections/ day
- Thus, there is a need to provide this automatic and customized dosing

Insulin release in response to resulting high blood glucose level (meal intake) may help in reducing the number of injections required

WHY HYDROGELS?

A hydrogel is a network of hydrophilic polymers that can swell in water and hold a large amount of water while maintaining the structure

http://sticky.kaist.ac.kr/menu2/menu3.php

Ahmed, Enas M., Journal of advanced research (2013).

GLUCOSE SENSITIVE HYDROGELS

Figure: Schematic representation of a glucose-responsive glucose-oxidase-loaded membrane (Priya Bawa et al; Biomed. Mater. 4 (2009))

PHENOMENA INVOLVED

 Hydrogel is loaded with Glucose oxidase & Catalase that helps the conversion of Glucose to Gluconic acid and decomposes H₂O₂ respectively:

$$Glucose + \frac{1}{2}O_2 \xrightarrow{GOX} GluconicAcid + H_2O_2$$
$$H_2O_2 \xrightarrow{Catalase} \frac{1}{2}O_2 + H_2O_2$$

which follow the following reaction order:

$$R = \frac{V_{\max}C_{Ox}C_{Glu}}{C_{ox}(K_{Glu} + C_{Glu}) + K_{ox}C_{Glu}}$$
$$R = \frac{V_{\max}C_{H_2O_2}}{K_{H_2O_2} + C_{H_2O_2}}$$

- In the presence of Glucose, the reaction proceeds to form Gluconic Acid which lowers the pH of the solution inside the HG
- This causes a change of osmotic Pressure inside the HG making it change shape and release Insulin

MECHANISM OF HYDROGEL SWELLING

MATHEMATICAL MODEL

(H. Li et al; Journal of the Mechanics and Physics of Solids (2008))

Where, c_k : Species concentration; z_f : charge on fixed specie; v_{κ} : S D_k : Species Diffusion Coefficient; c_f : Fixed charge concentration;R: ra z_k : charge on mobile specie; K_a : Dissociation constant of the gel; P_{osmo} ψ : Electric Potential; C_{mo} : Total pendant group concentration; P_{osmo} μ_k : Ionic mobility o specie;H: Swelling Ratio; σ : Cauchy stress tensor	: Stoichiometric Coefficient rate of Reaction; _{smotic} : Osmotic Pressure at interface
---	--

MATHEMATICAL MODEL

(H. Li et al; Journal of the Mechanics and Physics of Solids (2008))

MATHEMATICAL MODEL

(H. Li et al; Journal of the Mechanics and Physics of Solids (2008))

INITIAL & BOUNDARY CONDITIONS

- Neumann BC: r=0
- Dirichlet BC: L_{bulk}

EXPERIMENTAL STUDY

- A sulfonamide (Sulphadimethoxine, SDM) based glucose-sensitive hydrogel, bonded with an acrylamide monomer was synthesized
- Glucose oxidase and catalase enzymes were immobilized on the hydrogel
- Reversible swelling from 12 to 8 on a glucose concentration change in the range 0-16.5 mol/m³ at a pH of 7.4 was observed
- Swelling ratio calculated as:

Weight _{final} - Weight _{initial} Weight_{initial}

(Kang et al, Journal of Controlled Release (2003))

MODEL VALIDATION

Swelling Ratio VS pH

Experiment Simulation

The anionic hydrogel swells as the pH of bathing solution is increased

MODEL VALIDATION (CONTINUED)

Hydrogel shrinks with increase in glucose concentration

MODEL RESULTS (Transient Simulation)

Glucose is changed as step inputs (as done in experiments)

Reversible swelling of the hydrogel is obtained which is similar to experimental data

EXPERIMENTL STUDY (Cationic Hydrogel)

- This data has been taken from Peppas et al
- They have done experiments using a *poly(diethylaminoethyl methacrylate)* hydrogel

EXPERIMENTAL OBSERVATIONS

- Swelling ratio around 2 at high pH and 11 at low pH
- Mesh size of HG is 10Å at high pH and 68Å at low pH
- Sharp change in swelling at pH=7.4

(Peppas et al, AIChE (2013))

Hydrogel (cationic) shrinks with increasing pH

INSULIN RELEASE IN RESPONSE TO MEAL INTAKE

Glucose Concentration, Swelling Ratio VS Time

Two peaks in glucose profile corresponds with two different sized meals

INSULIN RELEASE IN RESPONSE TO MEAL INTAKE

Insulin is released at glucose concentrations greater than 7 mmol/L

CONCLUSIONS

- We modeled the swelling behavior of glucose sensitive hydrogels using a multi-effect of model
- The model was validated with relevant experimental data
- We explored the use of cationic hydrogels for bolus Insulin delivery
- Hydrogels are capable of achieving reversible swelling/ shrinking by changing the process conditions

THANK YOU!

References

- 1. Effect of formulation factors on the bioactivity of glucose oxidase encapsulated chitosan–alginate microspheres: In vitro investigation and mathematical model prediction; M.J. Abdekhodaie, Ji Cheng, X.Y. Wu; Chemical Engineering Science, 2014
- 2. Stimuli-responsive polymers and their applications in drug delivery; Priya Bawa, Viness Pillay1, Yahya E Choonara and Lisa C du Toit; Biomed. Mater. 4, 2009
- 3. A chemo-electro-mechanical model for simulation of responsive deformation of glucose-sensitive hydrogels with the effect of enzyme catalysis; Hua Li, Rongmo Luo, Erik Birgersson, Khin Yong Lam; Journal of the Mechanics and Physics of Solids 57, 2009 (369–382)
- 4. Smart Hydrogel Modeling; Hua Li; Springer (2009)
- 5. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination; Zhimin Tao, Ryan A. Raffel, Abdul-Kader Souid, and Jerry Goodisman; Biophysical Journal Volume 96, April 2009 (2977–2988)
- 6. A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase; Seong II Kang, You Han Bae; Journal of Controlled release 86, 2003 (115–121)
- 7. Insulin Release Dynamics from Poly(diethylaminoethyl methacrylate) Hydrogel Systems; Steve R. Marek, Nicholas A. Peppas; AIChE Journal Vol. 59 No. 10, October 2013
- 8. Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions; Tamar Traitel, Yachin Cohen, Joseph Kost; Biomaterials 21, 2000 (1679-1687)

Parameters

Parameter	Value	Parameter	Value
R _{gel}	600μ	V _{GOX}	860(1/s)*C _{GOX}
R _{bulk}	4000μ	V _{Catalase}	860(1/s)*C _{Catalase}
C _{M0}	1900 mol/m ³	K _{glu}	69.92 mol/m ³
C ₀	138 mol/m ³	K _{oxygen}	0.6178 mol/m ³
C ^H 0	1 mol/m ³	D _{Na}	1.3x10 ⁻⁹ m ² /s
		D _{CI}	2.3x10 ⁻⁹ m ² /s
C ^{ox} 0	0.274 mol/m ³	D _H	9.3x10 ⁻⁹ m ² /s
C ^{glu} 0	0-16.5 mol/m ³		
C _{GOX}	0.15625 mol/m ³	D _{glu}	6.75x10 ⁻¹⁰ m ² /s
C _{Catalase}	0.048 mol/m ³	D _{ox}	2.29x10 ⁻⁹ m ² /s