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INTRODUCTION 

• For any diabetic patient, Insulin can be injected inside the body using two prominent 

methods: Injections & Insulin Pumps 

• Glucose levels need to be closely monitored either using a glucose meter or a CGM 

sensor to decide the amount of insulin to be delivered 

• A Doctor needs to closely monitor the patient conditions to avoid hyperglycemia and 

hypoglycemic events 

• A novel delivery system is required that can sense and deliver insulin 



• Type 1 diabetes patients require 3-4 injections/ day 
• Thus, there is a need to provide this automatic and customized dosing 

Insulin dosages are of two types: Basal and Bolus 

A general guideline required for insulin 
infusion is: 
- 0.2 IU/Kg/day of basal insulin 
- 0.05-0.1 IU/Kg of insulin before 

consuming meal 

Insulin release in response to resulting high blood glucose level (meal intake) may help in 
reducing the number of injections required 

INTRODUCTION 



A hydrogel is a network of hydrophilic polymers that can swell in water and hold a large 
amount of water while maintaining the structure 
 
Example: Poly Acrylic Acid (PAA), Polyacrylamide (PAM) etc. 

http://sticky.kaist.ac.kr/menu2/menu3.php 

Stimuli responsive hydrogel 

WHY HYDROGELS? 

Ahmed, Enas M., Journal of advanced research (2013). 



Figure: Schematic representation of a glucose-responsive glucose-oxidase-loaded membrane (Priya Bawa et al; Biomed. Mater. 4 
(2009)) 

 

GLUCOSE SENSITIVE HYDROGELS 
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Glucose 

Gluconic Acid 



PHENOMENA INVOLVED 

• Hydrogel is loaded with Glucose oxidase & Catalase that helps the conversion of 

Glucose to Gluconic acid and decomposes H2O2 respectively: 

 

      

      which follow the following reaction order: 

 

 

 

• In the presence of Glucose, the reaction proceeds to form Gluconic Acid which lowers 

the pH of the solution inside the HG 

• This causes a change of osmotic Pressure inside the HG making it change shape and 

release Insulin 
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MECHANISM OF HYDROGEL SWELLING 

Example: 
Carboxylic, 
Sulphonic 
acid based 
Hydrogels 
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MATHEMATICAL MODEL 

NERNST-PLANCK EQUATION: 

POISSON EQUATION: 

FIXED CHARGE 
EQUATION: 

MECHANICAL 
EQUILIBRIUM 
EQUATION: 

(H. Li et al; Journal of the Mechanics and Physics of Solids (2008)) 

Where, ck : Species concentration; 
             Dk: Species Diffusion Coefficient; 
             zk: charge on mobile specie; 
             y: Electric Potential;  
             µk: Ionic mobility o specie; 

zf: charge on fixed specie; 
cf: Fixed charge concentration; 
Ka: Dissociation constant of the gel; 
Cmo: Total pendant group concentration; 

H: Swelling Ratio; 
s: Cauchy stress tensor 
 

nk: Stoichiometric Coefficient 
R: rate of Reaction; 
Posmotic: Osmotic Pressure at interface 
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NERNST-PLANCK EQUATION: 

POISSON EQUATION: 

(H. Li et al; Journal of the Mechanics and Physics of Solids (2008)) 
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(H. Li et al; Journal of the Mechanics and Physics of Solids (2008)) 

FIXED CHARGE 
EQUATION: 

MECHANICAL 
EQUILIBRIUM 
EQUATION: 

Hydrogen ion 
Concentration 

Net Pendant Group 
Concentration 

Force due Osmotic 
Pressure 
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INITIAL & BOUNDARY CONDITIONS 

Lgel 
Lbulk 

y = 0

Ci =Ci
0(i =Glu,Ox,Buffer,GA,H2O2 )

Cinsulin = 0

Lgel Lbulk 

• Radial geometry 

• Neumann BC: r=0 

• Dirichlet BC: Lbulk 

Lgel Lbulk 



EXPERIMENTAL STUDY 

• A sulfonamide (Sulphadimethoxine, SDM) based glucose-sensitive hydrogel, bonded 

with an acrylamide monomer was synthesized  

• Glucose oxidase and catalase enzymes were immobilized on the hydrogel 

• Reversible swelling from 12 to 8 on a glucose concentration change in the range 0-16.5 

mol/m3 at a pH of 7.4 was observed 

• Swelling ratio calculated as: 

 

(Kang et al, Journal of Controlled Release (2003)) 

Weight final -Weightinitial

Weightinitial



MODEL VALIDATION 
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Swelling Ratio VS pH 

Experiment Simulation

The anionic hydrogel swells as the pH of bathing solution is increased  



MODEL VALIDATION (CONTINUED) 
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Simulation Experiment

Hydrogel shrinks with increase in glucose concentration 



MODEL RESULTS (Transient Simulation)  
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Glucose is changed as step inputs (as done 
in experiments) 

Reversible swelling of the hydrogel is 
obtained which is similar to experimental 

data 
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EXPERIMENTL STUDY (Cationic Hydrogel) 
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• This data has been taken from Peppas et al 

• They have done experiments using a poly(diethylaminoethyl methacrylate) hydrogel 

(cationic) EXPERIMENTAL 
OBSERVATIONS 

1. Swelling ratio around 2 

at high pH and 11 at low 

pH 

2. Mesh size of HG is 10Å at 

high pH and 68Å at low 

pH 

3. Sharp change in swelling 

at pH=7.4 

 

Hydrogel (cationic) shrinks with increasing pH 

(Peppas et al, AIChE (2013)) 



INSULIN RELEASE IN RESPONSE TO MEAL INTAKE 

Two peaks in glucose profile corresponds with two different sized meals 
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Insulin is released at glucose concentrations greater than 7 mmol/L 
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INSULIN RELEASE IN RESPONSE TO MEAL INTAKE 



CONCLUSIONS 

• We modeled the swelling behavior of glucose sensitive hydrogels using a multi-effect of 

model 

• The model was validated with relevant experimental data 

• We explored the use of cationic hydrogels for bolus Insulin delivery 

• Hydrogels are capable of achieving reversible swelling/ shrinking by changing the 

process conditions 



THANK YOU! 
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Parameters 

Parameter Value 

Rgel 600µ 
 

Rbulk 4000µ 
 

CM0 1900 mol/m3 

 

C0 138 mol/m3 

CH
0 1 mol/m3 

Cox
0 0.274 mol/m3 

Cglu
0 0-16.5 mol/m3 

CGOX 0.15625 mol/m3 

CCatalase 0.048 mol/m3 

 

Parameter Value 

VGOX 860(1/s)*CGOX 

 

VCatalase 860(1/s)*CCatalase 

 

Kglu 69.92 mol/m3 

Koxygen 0.6178 mol/m3 

DNa 1.3x10-9 m2/s 
 

DCl 2.3x10-9 m2/s 

DH 9.3x10-9 m2/s 
 

Dglu 6.75x10-10 m2/s 
 

Dox 2.29x10-9 m2/s 

(Kang et al, Journal of Controlled Release (2003)) 


