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Introduction

* MEMS work in a significantly different environment with
respect to larger size machine ==) strongly affected by
the surrounding air.

* The air presents a counter reactive force on the moving
elements of such devices.
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Introduction
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Damping effect of enveloping air is enforced if a plate is
oscillating close to another plate, so that the air film is
squeezed in between the two surfaces.

It needs to vibrate with a high Q-factor in the
horizontal plane and a low one along the transverse
plane —




Model Definition - Geometry
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The model consists of one square proof-
mass suspended by a thin cantilever
beam. The cantilever beam is fixed at the
end to the surrounding environment.

Length [um] 600

Beam Width [um] 20
Thickness [pum] 10



Model Definition — Coupling and Physics

The model uses 3D Solid-Mechanics Physics interface to
solve the squeezed film air/structure interaction using
the Thin-Film Damping extension within the former
domain.

Thin-Film Damping is a boundary physics, due to relative
size with respect to the solid structure.

Zero-pressure thin-film edge condition used.
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Model Definition — Material and Loads

e Solid Domain ====) Sjlicon
* Thin-Film gap =) Air

Step response to a volume force: F = pa, where a = %, to
study the oscillatory behaviour.
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Use of COMSOL Multiphysics® Software

Studies Extensions
" "
|| Eigenfrequency | | Parametric Sweep

|| Time-Dependent | Optimization

' | Frequency Domain

Thin-Film Damping boundary physics within 3D Solid
Mechanics to simulate film/structure interaction.
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Model Validation — Analitical Model

Physics of the phenomenon can be described by Reynolds
equation.
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Model Validation — Analitical Model

2h2
Cut-off frequency: w, = —224

12 uw?

When a device owns a resonance frequency lower than the
cut-off one

g Viscous damping constant
Elastic damping negligible
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Model Validation — Analitical Model

Standard second-order oscillator differential equation:
mz+cyz + (kg + k.)z = pa

,ke=0andk0=£

13°

uLw?3
h3

Where c; = 0.42
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Total displacement (um)

Model Validation — Analitical Model

Comsol simulation Differential-equation integrator
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Model Validation — Analitical Model

Mesh convergence test: extra fine e———— normal
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Results and Discussion — Pressure sweep
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Results and Discussion — Pressure sweep

Clearly the smaller the ambient pressure, the less
significant is damping.

The ambient pressure should be kept relatively high in
order to exploit thin-film damping to block the transverse

oscillation.

CoMOL e 10 kPa asymptotic behavior
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Results and Discussion — Gap height sweep
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Results and Discussion — Gap height sweep

From a graphical interpretation:

* Overdamped for h =3 um
* Nearly Critically damped for h =5 um
* Underdamped for h=7,10 um

Benefit from being critically damped = system to be

brought back to stable position within the shortest time.
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Results and Discussion — Frequency Response
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Results and Discussion — Frequency Response 7
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The plot shows a
typical set of second-
order damped
oscillator curves, as
expected from the
Time-Dependent study



Results and Discussion — Frequency Response X

| ;'g | Although each
| i frequency response is
il | typical of an
Z’_ 0.14F Ilf ||' 1
[ | underdamped system,
E el / \ the quality factor
8 go6k ,' H\,
] reduces as the gap

| | height reduces.
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Results and Discussion — Frequency Response

* Not much damping is present in the horizontal motion
along X
 Second-order damped oscillator curves along Z

\

Best-performing if
critically damped along Z
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Results and Discussion — Optimization

An Optimization study was added to a Time-dependent along

the Z direction to find out the gap height that would force the
system to be critically damped.

Nelder-Mead algorithm: f(h) = {, — 1 » min(f)

h. .. =4.48 um
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Results and Discussion — Surface Texture Variation
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Conclusions and Future Work

Conclusions

Asymptotic behavior for pressure higher than 10 kPa
Radial distribution of fluid load
Major influence of thin-film thickness on Z damping

Second-order oscillator along Z == critically damped as desired
condition == h_. =4.48 pm

e Model validation using analytical model

e Better modelling of the realistic MEMS environment (casing, etc)
e Topology optimization of the surface texture
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Results and Discussion — Fluid Load

I A typical radial distribution
occurs, in which the inner
fluid is trapped by the

| squeezing-effect resulting in
- a much higher reaction load
| on the wall.
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