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Introduction

• MEMS work in a significantly different environment with 
respect to larger size machine         strongly affected by 
the surrounding air. 

• The air presents a counter reactive force on the moving 
elements of such devices. 
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Introduction

• Damping effect of enveloping air is enforced if a plate is 
oscillating close to another plate, so that the air film is 
squeezed in between the two surfaces. 

• It needs to vibrate with a high Q-factor in the 

horizontal plane and a low one along the transverse 
plane
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Model Definition - Geometry

The model consists of one square proof-
mass suspended by a thin cantilever 
beam. The cantilever beam is fixed at the 
end to the surrounding environment. 

Side [µm] 200

Length [µm] 600

Beam Width [µm] 20

Thickness [µm] 10
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Model Definition – Coupling and Physics
The model uses 3D Solid-Mechanics Physics interface to 
solve the squeezed film air/structure interaction using 
the Thin-Film Damping extension within the former 
domain. 

Thin-Film Damping is a boundary physics, due to relative 
size with respect to the solid structure. 

Zero-pressure thin-film edge condition used.
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Model Definition – Material and Loads

• Solid Domain              Silicon
• Thin-Film gap              Air

Step response to a volume force: 𝐹 = 𝜌𝑎, where 𝑎 =
𝑔

2
, to 

study the oscillatory behaviour.
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Use of COMSOL Multiphysics® Software

Studies

Eigenfrequency

Time-Dependent

Frequency Domain

Extensions

Parametric Sweep

Optimization

Thin-Film Damping boundary physics within 3D Solid 
Mechanics to simulate film/structure interaction.
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Model Validation – Analitical Model 

Physics of the phenomenon can be described by Reynolds 
equation.
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Model Validation – Analitical Model 

Cut-off frequency: 𝜔𝑐 =
𝜋2ℎ0

2𝑝𝑎

12𝜇𝑤2

When a device owns a resonance frequency lower than the 
cut-off one 

Viscous damping constant
Elastic damping negligible
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Model Validation – Analitical Model 

Standard second-order oscillator differential equation:

𝑚  𝑧 + 𝑐𝑑  𝑧 + 𝑘0 + 𝑘𝑒 𝑧 = 𝜌𝑎

Where 𝑐𝑑 = 0.42
𝜇𝐿𝑤3

ℎ3
, 𝑘𝑒 = 0 and 𝑘0 =

3𝐸𝐼

𝑙3
.
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Model Validation – Analitical Model 

Comsol simulation Differential-equation integrator
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Model Validation – Analitical Model 

Mesh convergence test: extra fine                 normal 
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Results and Discussion – Pressure sweep

• The aim is to find an optimum between high damping in
transverse oscillation and very low damping in the
horizontal motion.

• Sweeping ambient pressure from 500 Pa to 1 Atm, only 
along the Z-direction (most sensitive).
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Results and Discussion – Pressure sweep
Clearly the smaller the ambient pressure, the less 
significant is damping. 

The ambient pressure should be kept relatively high in 
order to exploit thin-film damping to block the transverse 
oscillation. 

10 kPa asymptotic behavior
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Results and Discussion – Gap height sweep

• The effects of squeeze film damping becomes dominant 
when the characteristic size of the device is at least 3 times 
larger than the gap height.

• Sweeping gap height 3-10 µm, only along the Z-direction
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Results and Discussion – Gap height sweep

From a graphical interpretation:

• Overdamped for h = 3 µm
• Nearly Critically damped for h = 5 µm
• Underdamped for h = 7,10 µm

Benefit from being critically damped          system to be 
brought back to stable position within the shortest time. 
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Results and Discussion – Frequency Response

The eigenfrequencies were found to be: 

𝑓0𝑍 = 7771 𝐻𝑧
𝑓0𝑋 = 15432 𝐻𝑧

From which the damping ratio can be determined:   𝜁 =
𝑐𝑑

2𝑚𝜔0
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Results and Discussion – Frequency Response Z

The plot shows a 
typical set of second-
order damped 
oscillator curves, as 
expected from the 
Time-Dependent study
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Results and Discussion – Frequency Response X

Although each 
frequency response is 
typical of an 
underdamped system, 
the quality factor 
reduces as the gap 
height reduces.

20



Results and Discussion – Frequency Response 

• Not much damping is present in the horizontal motion 
along X

• Second-order damped oscillator curves along Z

Best-performing if 
critically damped along Z
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Results and Discussion – Optimization

An Optimization study was added to a Time-dependent along 
the Z direction to find out the gap height that would force the 
system to be critically damped. 

Nelder-Mead algorithm: f h = 𝜁𝑧 − 1 min(f)

hmin = 4.48 µm
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Results and Discussion – Surface Texture Variation

Frequency 
response 
along X

Maximum amplitude is higher then the best-case of 
previous scenario
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Conclusions

• Asymptotic behavior for pressure higher than 10 kPa

• Radial distribution of fluid load

• Major influence of thin-film thickness on Z damping

• Second-order oscillator along Z            critically damped as desired 
condition            hmin = 4.48 µm

• Model validation using analytical model

Future work

• Better modelling of the realistic MEMS environment (casing, etc)

• Topology optimization of the surface texture

Conclusions and Future Work
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Results and Discussion – Fluid Load

A typical radial distribution 
occurs, in which the inner 
fluid is trapped by the 
squeezing-effect resulting in 
a much higher reaction load 
on the wall. 
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