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OBJECTIVES

Develop a COMSOL simulation such that:

1 The physical domain is three-dimensional
and has no exterior boundary;

2 The spin tensor, Vu — (Vu)?, (in which
u is the velocity field) differs from the null
tensor only in a bounded subdomain;

3 An analytical solution is available for com-
parison.



PHYSICAL DOMAINS; FEATURES
OF HILL’S SPHERICAL VORTEX

Let R* and R¢ denote the three-dimensional re-
gions interior and exterior to a sphere of radius
a, respectively. Let the motion be solenoidal ev-
erywhere, so divu = 0 identically. Let the mo-
tion in R¢ be uniformly irrotational. Let the mo-
tion in R* be rotational with

Vu—(Vu)T:A(r®ig—i3®r),

in which 13 is a constant vector, A is a constant
scalar, and r denotes position relative to the cen-
ter of the sphere. Notation: (a®@ b)v :=a(bev).



VARIATIONAL PRINCIPLES IN R* AND R¢

Consider the problem of minimizing F', in which

// {(divu)?+ 2 [Vu— (V)" — W[} dV .

Re{R*,Re}
Here

W Ar®iz —13®r), forallr € R,
- O, forallr e Re,

in which O in the last line denotes the null ten-
SOT.



NON UNIQUENESS OF THE VELOCITY
FIELD, u, THAT MINIMIZES F

Note that F' attains the minimium value O for
any function u that satisfies the system of equa-
tions

divu=0 , Vu—(Vu)! =WwW.

If u; and uy are any two solutions of this system
then

div (ug—u;) =0, V(us—u;)—[V(uz—u;)]* = 0.

Any function of the form uy — u; = V¢, satisfies
this system provided V?¢ = 0.



A BOUNDARY CONDITION THAT
REMOVES THE AMBIGUITY IN u

In potential theory if a solution of V?¢ = 0 (in
a simply connected domain) satisfies the NEU-
MANN boundary condition

Voenn =0
then V¢ = 0 throughout that domain. Thus,
in the present problem us — u; = V¢ will be
vanish if (us — uy) «fi = 0, which will be the case
if u; and uy satisfy a common normal velocity
condition u; e = m, ¢ € {1,2}, in which m is a
given function of position on the boundary.



VARIATIONAL FORMALISM IN R?, 1

If one starts with the definition of F' then, in
the terminology of the calculus of variations, one
may derive an identity satisfied by the first vari-
ation, 0F of F', namely

oF + // 5u-[—F(ﬁ)]dA—|—///(5u-dideV =0,
Ri

OR?

in which

I:=2(divu)l + Vu— (Vu)! —W .



VARIATIONAL FORMALISM IN R*, 11

If 0 F vanishes (¢.e. F' is stationary) for arbitrary
variations, du in R* and arbitrary tangential
components of Ju on OR* one deduces the nat-
ural boundary condition and EULER-LAGRANGE
equation, respectively, namely

—I'(n)=0 , divIl=0.



MODIFIED KELVIN INVERSION, |

Let a be a given length scale. Let r denote posi-
tion relative to an origin, and let » = |r|. Con-
sider the change of position variable r — q de-
fined by the rule r/r = —q/q with r¢ = a* and
q = |q|. Then a is the geometric mean of r and
q; soif g <rthenqg<a<r.

If, in particular, r is a point exterior to the
sphere r = a then q is a point interior to that
sphere. I will call the sphere r = a = ¢ the
Bounding Sphere. (Remark: True KELVIN Inver-
sion has r/r = q/q.)



MODIFIED KELVIN INVERSION, 11

I have already introduced the constant unit vec-
tor 3. Now let {11,15,13} be a right-handed or-
thogonal system of unit vectors. One may re-
solve any vector or tensor into components rel-
ative to the basis {i1,12,13}, €.g. r = 2?21 ri1;
and q = Z?Zl ¢;1;. Similarly, one my define op-
erators V, (.) and div, (.) whose expansions rel-
ative to the coordinates (q1, q2, q3) are analogous
to the expansions of V(.) and div (.) relative to
the coordinates (rq,7r2,73) (all expansions being
relative to {11,12,13}).



MODIFIED KELVIN INVERSION, 111

The equations introduced thus far define a
function (g1, g2,q3) — r. In this way the list
(q1,q2,q3) constitute a system of curvilinear co-
ordinates. It so happens that this system is or-
thogonal in the sense that

(0r/0q;) «(0r/0q;) =0 fori#j.

Furthermore the corresponding scale factors

(h1, ho, h3), whose generic definition is h; =
|0r/0q;||, i € {1,2,3} have the the common
value h1 = hg = hg :== h = (a/q)*.



MODIFIED KELVIN INVERSION, 1V

From the equations given thus far one may show
that the differentials dr and dq are related by
the identity dr = h Q(dq), in which

Q:=2(a/q) ®(a/q) — I,

and in which [ is the identity tensor. Here () is
an orthogonal tensor (i.e. ||Q(a)| = ||a|| for all
a), so Q1 = Q!. Furthermore, the system of
unit vectors {Q(11), Q(i2), Q(i3)} is right handed
(which would not be the case for true KELVIN
Inversion).



MODIFIED KELVIN INVERSION, V

From the equations given thus far one may de-
rive the following transformation rules

divu = h™3div, [Q' (h*u)],

Vu— (Vu)!
= h72Q{V, [Q" (h)] — V, [Q" (hu)]" }Q"

Vi = h_lQ(Vq ©)

in which ¢ is any scalar field.



VARIATIONAL PRINCIPLE IN Q

The change of variable r — q takes the physi-
cal exterior domain, R, to a prory domain, Q.
If one transforms the definition of F'—i.e. the
quantity to be minimized—ifrom an integral over
R¢ to one over Q one gets

///

in which U := Q1 (hu).

3 {div, (hU)}?
4)h

19, (0) =V, (U] v,



VARIATIONAL FORMALISM IN Q, 1

Proceeding as before, one may derive an identity
satisfied by the first variation, oF', of F', namely

5F+//5U
///5U dlqu f)dV—O
in which

09
[ :=2h~2div (hU)I + L[V, U — (V, U)T]
f :=2h 3div(hU)V, h .



VARIATIONAL FORMALISM IN Q, 11

If 0 F' vanishes (¢.e. F' is stationary) for arbitrary
variations, 0U in Q and arbitrary tangential
components of oU on 09 one deduces the nat-
ural boundary condition and EULER-LAGRANGE
equation, respectively, namely

—I'(n,) =0 , div,I'=f,



BOUNDARY CONDITIONS FOR THE
NORMAL VELOCITY IN R* AND R¢

If u in R is referred to a frame in which the
boundary sphere is at rest then usfi = 0 on OR".
If the parameter, A, is given then the equations
given thus far determine u in R* uniquely.

If u in R€ is referred to a frame in which
the remote undisturbed fluid is at rest then
uen = wgizen on OR®, in which w; is the ver-
tical velocity of the bounding sphere relative to
that remote fluid. If wy is given then the equa-
tions given thus far determine u in R€ uniquely.




CONDITION FOR THE ABSENCE OF A SLIP
LAYER AT THE BOUNDING SPHERE, I

If A and ws are both given arbitrarily the com-
ponent of u in the tangential, non-swirl direc-
tion is not, in general, the same on OR* and OR®
(even after if u is referred to a common refer-
ence frame). To avoid a non-physical difference
in pressure across the bounding sphere, one must
determine either one of the parameters A or wy
in terms of the other.



CONDITION FOR THE ABSENCE OF A SLIP
LAYER AT THE BOUNDING SPHERE, 11

In the present model ws was given and the solu-
tions for u in the R¢ and R* were calculated in
Steps 1 and 2, respectively, of a solver sequence.
In Step 2 A was computed by means of a Global
ODE and DAE node to ensure that the circum-
ferentially averaged northern component of fluid
speed at the equator on OR* agreed with the cor-
responding value obtained in Step 1.



Velocity in a plane containing the axis of symme-
try: shading shows fluid speed; solid lines show
streamlines; and arrows show velocity vectors.



CONCLUSIONS

KELVIN Inversion defines an orthogonal curvilin-
ear coordinate system such that:

C1. A single scale factor is common to all three
coordinates.

C2. Its associated system of unit vectors is left

handed for true KELVIN Inversion but right

handed for modified KELVIN Inversion;

C3. It maps an unbounded physical domain to
a bounded proxy domain and enables the
solution for the velocity in the latter.






