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Objectives

Develop a COMSOL simulation such that:

1 The physical domain is three-dimensional
and has no exterior boundary;

2 The spin tensor, �u � (�u)T , (in which
u is the velocity field) di⇥ers from the null
tensor only in a bounded subdomain;

3 An analytical solution is available for com-
parison.



Physical Domains; Features
of Hill’s Spherical Vortex

Let Ri and Re denote the three-dimensional re-
gions interior and exterior to a sphere of radius
a, respectively. Let the motion be solenoidal ev-
erywhere, so divu = 0 identically. Let the mo-
tion in Re be uniformly irrotational. Let the mo-
tion in Ri be rotational with

�u� (�u)T = A(r⇥ ı̂3 � ı̂3 ⇥ r) ,

in which ı̂3 is a constant vector, A is a constant
scalar, and r denotes position relative to the cen-
ter of the sphere. Notation: (a⇥ b)v := a(b •v).



Variational principles in Ri and Re

Consider the problem of minimizing F , in which

F :=
⌃⌃⌃

R⇥{Ri,Re}

{(divu)2 + 1
4⌥�u�(�u)T �W ]⌥2} dV .

Here

W :=
⌅

A(r⇥ ı̂3 � ı̂3 ⇥ r), for all r ⌅ Ri ,
O, for all r ⌅ Re ,

in which O in the last line denotes the null ten-
sor.



Non uniqueness of the velocity
field, u, that minimizes F

Note that F attains the minimium value 0 for
any function u that satisfies the system of equa-
tions

divu = 0 , �u� (�u)T = W .

If u1 and u2 are any two solutions of this system
then

div (u2�u1) = 0 , �(u2�u1)�[�(u2�u1)]T = O.

Any function of the form u2 � u1 = �⇥, satisfies
this system provided �2⇥ = 0.



A boundary condition that
removes the ambiguity in u

In potential theory if a solution of �2⇥ = 0 (in
a simply connected domain) satisfies the Neu-
mann boundary condition

�⇥ • n̂ = 0
then �⇥ = 0 throughout that domain. Thus,
in the present problem u2 � u1 = �⇥ will be
vanish if (u2 � u1) • n̂ = 0, which will be the case
if u1 and u2 satisfy a common normal velocity
condition ui • n̂ = m, i ⌅ {1, 2}, in which m is a
given function of position on the boundary.



Variational formalism in Ri, I

If one starts with the definition of F then, in
the terminology of the calculus of variations, one
may derive an identity satisfied by the first vari-
ation, �F of F , namely

�F +
⌃⌃

�Ri

�u •[��(n̂)]dA+
⌃⌃⌃

Ri

�u •div� dV = 0 ,

in which

� := 2(divu)I +�u� (�u)T �W .



Variational formalism in Ri, II

If �F vanishes (i.e. F is stationary) for arbitrary
variations, �u in Ri and arbitrary tangential
components of �u on ⌅Ri one deduces the nat-
ural boundary condition and Euler-Lagrange
equation, respectively, namely

��(n̂) = 0 , div� = 0 .



Modified Kelvin inversion, I

Let a be a given length scale. Let r denote posi-
tion relative to an origin, and let r = |r|. Con-
sider the change of position variable r ⇤ q de-
fined by the rule r/r = �q/q with rq = a2 and
q = |q|. Then a is the geometric mean of r and
q; so if q < r then q < a < r.

If, in particular, r is a point exterior to the
sphere r = a then q is a point interior to that
sphere. I will call the sphere r = a = q the
Bounding Sphere. (Remark: True Kelvin Inver-
sion has r/r = q/q.)



Modified Kelvin inversion, II

I have already introduced the constant unit vec-
tor ı̂3. Now let {̂ı1, ı̂2, ı̂3} be a right-handed or-
thogonal system of unit vectors. One may re-
solve any vector or tensor into components rel-
ative to the basis {̂ı1, ı̂2, ı̂3}, e.g. r =

⇧3
i=1 rîıi

and q =
⇧3

i=1 qîıi. Similarly, one my define op-
erators �q ( .) and divq ( .) whose expansions rel-
ative to the coordinates (q1, q2, q3) are analogous
to the expansions of �( .) and div ( .) relative to
the coordinates (r1, r2, r3) (all expansions being
relative to {̂ı1, ı̂2, ı̂3}).



Modified Kelvin inversion, III

The equations introduced thus far define a
function (q1, q2, q3) ⌃⇤ r. In this way the list
(q1, q2, q3) constitute a system of curvilinear co-
ordinates. It so happens that this system is or-
thogonal in the sense that

(⌅r/⌅qi) •(⌅r/⌅qj) = 0 for i ⇧= j .

Furthermore the corresponding scale factors
(h1, h2, h3), whose generic definition is hi :=
⌥⌅r/⌅qi⌥, i ⌅ {1, 2, 3} have the the common
value h1 = h2 = h3 := h = (a/q)2.



Modified Kelvin inversion, IV

From the equations given thus far one may show
that the di⇥erentials dr and dq are related by
the identity dr = hQ(dq), in which

Q := 2(q/q)⇥ (q/q)� I ,

and in which I is the identity tensor. Here Q is
an orthogonal tensor (i.e. ⌥Q(a)⌥ = ⌥a⌥ for all
a), so QT = Q�1. Furthermore, the system of
unit vectors {Q(̂ı1), Q(̂ı2), Q(̂ı3)} is right handed
(which would not be the case for true Kelvin
Inversion).



Modified Kelvin inversion, V

From the equations given thus far one may de-
rive the following transformation rules

divu = h�3divq [QT (h2u)] ,

�u� (�u)T

= h�2Q{�q [QT (hu)]��q [QT (hu)]T }QT ,

�⇤ = h�1Q(�q ⇤) ,

in which ⇤ is any scalar field.



Variational principle in Q

The change of variable r ⇤ q takes the physi-
cal exterior domain, Re, to a proxy domain, Q.
If one transforms the definition of F—i.e. the
quantity to be minimized—from an integral over
Re to one over Q one gets

F :=
⌃⌃⌃

Q

�
h�3{divq (hU)}2

+ (1/4)h�1
⇤⇤[�q (U)��q (U)T ]

⇤⇤2
⌥

dVq ,

in which U := QT (hu).



Variational formalism in Q, I

Proceeding as before, one may derive an identity
satisfied by the first variation, �F , of F , namely

�F +
ZZ
@Q

�U •[��(n̂q)]dAq

+
ZZZ

Q

�U •(divq �� f) dVq = 0 ,

in which
� := 2h�2div (hU)I + h�1

⇥
rq U� (rq U)T

⇤
,

f := 2h�3div (hU)rq h .



Variational formalism in Q, II

If �F vanishes (i.e. F is stationary) for arbitrary
variations, �U in Q and arbitrary tangential
components of �U on ⌅Q one deduces the nat-
ural boundary condition and Euler-Lagrange
equation, respectively, namely

��(n̂q) = 0 , divq � = f ,



Boundary conditions for the
normal velocity in Ri and Re

If u in Ri is referred to a frame in which the
boundary sphere is at rest then u • n̂ = 0 on ⌅Ri.
If the parameter, A, is given then the equations
given thus far determine u in Ri uniquely.

If u in Re is referred to a frame in which
the remote undisturbed fluid is at rest then
u • n̂ = wŝı3 • n̂ on ⌅Re, in which ws is the ver-
tical velocity of the bounding sphere relative to
that remote fluid. If ws is given then the equa-
tions given thus far determine u in Re uniquely.



Condition for the absence of a slip
layer at the bounding sphere, I

If A and ws are both given arbitrarily the com-
ponent of u in the tangential, non-swirl direc-
tion is not, in general, the same on ⌅Ri and ⌅Re

(even after if u is referred to a common refer-
ence frame). To avoid a non-physical di⇥erence
in pressure across the bounding sphere, one must
determine either one of the parameters A or ws

in terms of the other.



Condition for the absence of a slip
layer at the bounding sphere, II

In the present model ws was given and the solu-
tions for u in the Re and Ri were calculated in
Steps 1 and 2, respectively, of a solver sequence.
In Step 2 A was computed by means of a Global
ODE and DAE node to ensure that the circum-
ferentially averaged northern component of fluid
speed at the equator on ⌅Ri agreed with the cor-
responding value obtained in Step 1.



Velocity in a plane containing the axis of symme-
try: shading shows fluid speed; solid lines show
streamlines; and arrows show velocity vectors.



Conclusions

Kelvin Inversion defines an orthogonal curvilin-
ear coordinate system such that:
C1. A single scale factor is common to all three

coordinates.
C2. Its associated system of unit vectors is left

handed for true Kelvin Inversion but right
handed for modified Kelvin Inversion;

C3. It maps an unbounded physical domain to
a bounded proxy domain and enables the
solution for the velocity in the latter.




