

EQUATION-BASED MODELING: SIMULATION OF A FLOW WITH CONCENTRATED VORTICITY IN AN UNBOUNDED DOMAIN

JOHN M. RUSSELL, Professor Emeritus Florida Inst. of Technology, Melbourne, Florida COMSOL Conference, Boston, October 6, 2016

OBJECTIVES

Develop a COMSOL simulation such that:

- 1 The physical domain is three-dimensional and has no exterior boundary;
- 2 The spin tensor, $\nabla \mathbf{u} (\nabla \mathbf{u})^T$, (in which \mathbf{u} is the velocity field) differs from the null tensor only in a bounded subdomain;
- 3 An analytical solution is available for comparison.

Physical Domains; Features of Hill's Spherical Vortex

Let \mathcal{R}^i and \mathcal{R}^e denote the three-dimensional regions interior and exterior to a sphere of radius a, respectively. Let the motion be solenoidal everywhere, so div $\mathbf{u} = 0$ identically. Let the motion in \mathcal{R}^e be uniformly irrotational. Let the motion in \mathcal{R}^i be rotational with

$$\nabla \mathbf{u} - (\nabla \mathbf{u})^T = A(\mathbf{r} \otimes \hat{\mathbf{i}}_3 - \hat{\mathbf{i}}_3 \otimes \mathbf{r}) ,$$

in which $\hat{\mathbf{i}}_3$ is a constant vector, A is a constant scalar, and \mathbf{r} denotes position relative to the center of the sphere. Notation: $(\mathbf{a} \otimes \mathbf{b})\mathbf{v} := \mathbf{a}(\mathbf{b} \cdot \mathbf{v})$.

Variational principles in \mathbb{R}^i and \mathbb{R}^e

Consider the problem of minimizing F, in which

$$F := \iiint \{ (\operatorname{div} \mathbf{u})^2 + \frac{1}{4} \| \nabla \mathbf{u} - (\nabla \mathbf{u})^T - W \|^2 \} dV.$$

$$\mathcal{R} \in \{\mathcal{R}^i, \mathcal{R}^e\}$$

Here

$$W := \begin{cases} A(\mathbf{r} \otimes \mathbf{\hat{i}}_3 - \mathbf{\hat{i}}_3 \otimes \mathbf{r}), & \text{for all } \mathbf{r} \in \mathbb{R}^i, \\ O, & \text{for all } \mathbf{r} \in \mathbb{R}^e, \end{cases}$$

in which O in the last line denotes the null tensor.

Non uniqueness of the velocity field, \mathbf{u} , that minimizes F

Note that F attains the minimium value 0 for any function \mathbf{u} that satisfies the system of equations

$$\operatorname{div} \mathbf{u} = 0 \quad , \quad \nabla \mathbf{u} - (\nabla \mathbf{u})^T = W .$$

If \mathbf{u}_1 and \mathbf{u}_2 are any two solutions of this system then

$$\operatorname{div}(\mathbf{u}_2 - \mathbf{u}_1) = 0 , \ \nabla(\mathbf{u}_2 - \mathbf{u}_1) - [\nabla(\mathbf{u}_2 - \mathbf{u}_1)]^T = O.$$

Any function of the form $\mathbf{u}_2 - \mathbf{u}_1 = \nabla \phi$, satisfies this system provided $\nabla^2 \phi = 0$.

A BOUNDARY CONDITION THAT REMOVES THE AMBIGUITY IN **u**

In potential theory if a solution of $\nabla^2 \phi = 0$ (in a simply connected domain) satisfies the Neu-Mann boundary condition

$$\nabla \phi \cdot \hat{\mathbf{n}} = 0$$

then $\nabla \phi = \mathbf{0}$ throughout that domain. Thus, in the present problem $\mathbf{u}_2 - \mathbf{u}_1 = \nabla \phi$ will be vanish if $(\mathbf{u}_2 - \mathbf{u}_1) \cdot \hat{\mathbf{n}} = 0$, which will be the case if \mathbf{u}_1 and \mathbf{u}_2 satisfy a common normal velocity condition $\mathbf{u}_i \cdot \hat{\mathbf{n}} = m$, $i \in \{1, 2\}$, in which m is a given function of position on the boundary.

Variational formalism in \mathbb{R}^i , I

If one starts with the definition of F then, in the terminology of the calculus of variations, one may derive an identity satisfied by the first variation, δF of F, namely

$$\delta F + \iint_{\partial \mathcal{R}^i} \delta \mathbf{u} \cdot [-\Gamma(\mathbf{\hat{n}})] dA + \iiint_{\mathcal{R}^i} \delta \mathbf{u} \cdot \operatorname{div} \Gamma dV = 0 ,$$

in which

$$\Gamma := 2(\operatorname{div} \mathbf{u})I + \nabla \mathbf{u} - (\nabla \mathbf{u})^T - W.$$

Variational formalism in \mathbb{R}^i , II

If δF vanishes (i.e. F is stationary) for arbitrary variations, $\delta \mathbf{u}$ in \mathcal{R}^i and arbitrary tangential components of $\delta \mathbf{u}$ on $\partial \mathcal{R}^i$ one deduces the natural boundary condition and Euler-Lagrange equation, respectively, namely

$$-\Gamma(\mathbf{\hat{n}}) = \mathbf{0}$$
 , $\operatorname{div}\Gamma = \mathbf{0}$.

Modified Kelvin inversion, I

Let a be a given length scale. Let \mathbf{r} denote position relative to an origin, and let $r = |\mathbf{r}|$. Consider the change of position variable $\mathbf{r} \to \mathbf{q}$ defined by the rule $\mathbf{r}/r = -\mathbf{q}/q$ with $rq = a^2$ and $q = |\mathbf{q}|$. Then a is the geometric mean of r and q; so if q < r then q < a < r.

If, in particular, \mathbf{r} is a point exterior to the sphere r=a then \mathbf{q} is a point interior to that sphere. I will call the sphere r=a=q the Bounding Sphere. (Remark: True Kelvin Inversion has $\mathbf{r}/r=\mathbf{q}/q$.)

Modified Kelvin inversion, II

I have already introduced the constant unit vector $\hat{\mathbf{i}}_3$. Now let $\{\hat{\mathbf{i}}_1, \hat{\mathbf{i}}_2, \hat{\mathbf{i}}_3\}$ be a right-handed orthogonal system of unit vectors. One may resolve any vector or tensor into components relative to the basis $\{\hat{\mathbf{i}}_1, \hat{\mathbf{i}}_2, \hat{\mathbf{i}}_3\}$, e.g. $\mathbf{r} = \sum_{i=1}^3 r_i \hat{\mathbf{i}}_i$ and $\mathbf{q} = \sum_{i=1}^{3} q_i \hat{\mathbf{i}}_i$. Similarly, one my define operators ∇_q (.) and div_q (.) whose expansions relative to the coordinates (q_1, q_2, q_3) are analogous to the expansions of $\nabla(.)$ and div(.) relative to the coordinates (r_1, r_2, r_3) (all expansions being relative to $\{\hat{\mathbf{i}}_1, \hat{\mathbf{i}}_2, \hat{\mathbf{i}}_3\}$).

Modified Kelvin inversion, III

The equations introduced thus far define a function $(q_1, q_2, q_3) \mapsto \mathbf{r}$. In this way the list (q_1, q_2, q_3) constitute a system of *curvilinear co-ordinates*. It so happens that this system is *orthogonal* in the sense that

$$(\partial \mathbf{r}/\partial q_i) \cdot (\partial \mathbf{r}/\partial q_j) = 0 \text{ for } i \neq j.$$

Furthermore the corresponding scale factors (h_1, h_2, h_3) , whose generic definition is $h_i := \|\partial \mathbf{r}/\partial q_i\|$, $i \in \{1, 2, 3\}$ have the the common value $h_1 = h_2 = h_3 := h = (a/q)^2$.

Modified Kelvin inversion, IV

From the equations given thus far one may show that the differentials $d\mathbf{r}$ and $d\mathbf{q}$ are related by the identity $d\mathbf{r} = h Q(d\mathbf{q})$, in which

$$Q := 2(\mathbf{q}/q) \otimes (\mathbf{q}/q) - I ,$$

and in which I is the identity tensor. Here Q is an orthogonal tensor (i.e. $||Q(\mathbf{a})|| = ||\mathbf{a}||$ for all \mathbf{a}), so $Q^T = Q^{-1}$. Furthermore, the system of unit vectors $\{Q(\hat{\mathbf{i}}_1), Q(\hat{\mathbf{i}}_2), Q(\hat{\mathbf{i}}_3)\}$ is right handed (which would not be the case for true Kelvin Inversion).

Modified Kelvin Inversion, V

From the equations given thus far one may derive the following transformation rules

$$\operatorname{div} \mathbf{u} = h^{-3} \operatorname{div}_q \left[Q^T (h^2 \mathbf{u}) \right],$$

$$\nabla \mathbf{u} - (\nabla \mathbf{u})^{T}$$

$$= h^{-2} Q \{ \nabla_q \left[Q^T(h\mathbf{u}) \right] - \nabla_q \left[Q^T(h\mathbf{u}) \right]^T \} Q^T,$$

$$\nabla \varphi = h^{-1} Q(\nabla_q \varphi) ,$$

in which φ is any scalar field.

Variational principle in Q

The change of variable $\mathbf{r} \to \mathbf{q}$ takes the physical exterior domain, \mathbb{R}^e , to a *proxy* domain, \mathbb{Q} . If one transforms the definition of F—i.e. the quantity to be minimized—from an integral over \mathbb{R}^e to one over \mathbb{Q} one gets

$$F := \iiint_{\Omega} \left[h^{-3} \{ \operatorname{div}_{q} (h\mathbf{U}) \}^{2} + (1/4)h^{-1} \left\| \left[\nabla_{q} (\mathbf{U}) - \nabla_{q} (\mathbf{U})^{T} \right] \right\|^{2} \right] dV_{q} ,$$

in which $\mathbf{U} := Q^T(h\mathbf{u})$.

Variational formalism in Q, I

Proceeding as before, one may derive an identity satisfied by the first variation, δF , of F, namely

$$\delta F + \iint_{\partial \Omega} \delta \mathbf{U} \cdot [-\Gamma(\hat{\mathbf{n}}_q)] dA_q$$

$$+ \iiint_{\Omega} \delta \mathbf{U} \cdot (\operatorname{div}_q \Gamma - \mathbf{f}) dV_q = 0 ,$$

in which

$$\Gamma := 2h^{-2}\operatorname{div}(h\mathbf{U})I + h^{-1}\left[\nabla_q\mathbf{U} - (\nabla_q\mathbf{U})^T\right],$$

$$\mathbf{f} := 2h^{-3}\operatorname{div}(h\mathbf{U})\nabla_q h.$$

Variational formalism in Q, II

If δF vanishes (i.e. F is stationary) for arbitrary variations, $\delta \mathbf{U}$ in Ω and arbitrary tangential components of $\delta \mathbf{U}$ on $\partial \Omega$ one deduces the natural boundary condition and Euler-Lagrange equation, respectively, namely

$$-\Gamma(\mathbf{\hat{n}}_q) = \mathbf{0}$$
 , $\operatorname{div}_q \Gamma = \mathbf{f}$,

Boundary conditions for the Normal Velocity in \mathbb{R}^i and \mathbb{R}^e

If \mathbf{u} in \mathbb{R}^i is referred to a frame in which the boundary sphere is at rest then $\mathbf{u} \cdot \hat{\mathbf{n}} = 0$ on $\partial \mathbb{R}^i$. If the parameter, A, is given then the equations given thus far determine \mathbf{u} in \mathbb{R}^i uniquely.

If \mathbf{u} in \mathbb{R}^e is referred to a frame in which the remote undisturbed fluid is at rest then $\mathbf{u} \cdot \hat{\mathbf{n}} = w_s \hat{\mathbf{i}}_3 \cdot \hat{\mathbf{n}}$ on $\partial \mathbb{R}^e$, in which w_s is the vertical velocity of the bounding sphere relative to that remote fluid. If w_s is given then the equations given thus far determine \mathbf{u} in \mathbb{R}^e uniquely.

Condition for the absence of a slip layer at the bounding sphere, I

If A and w_s are both given arbitrarily the component of \mathbf{u} in the tangential, non-swirl direction is not, in general, the same on $\partial \mathcal{R}^i$ and $\partial \mathcal{R}^e$ (even after if \mathbf{u} is referred to a common reference frame). To avoid a non-physical difference in pressure across the bounding sphere, one must determine either one of the parameters A or w_s in terms of the other.

Condition for the absence of a slip layer at the bounding sphere, II

In the present model w_s was given and the solutions for \mathbf{u} in the \mathbb{R}^e and \mathbb{R}^i were calculated in Steps 1 and 2, respectively, of a solver sequence. In Step 2 A was computed by means of a Global ODE and DAE node to ensure that the circumferentially averaged northern component of fluid speed at the equator on $\partial \mathbb{R}^i$ agreed with the corresponding value obtained in Step 1.

Velocity in a plane containing the axis of symmetry: shading shows fluid speed; solid lines show streamlines; and arrows show velocity vectors.

Conclusions

Kelvin Inversion defines an orthogonal curvilinear coordinate system such that:

- C1. A single scale factor is common to all three coordinates.
- C2. Its associated system of unit vectors is left handed for true Kelvin Inversion but right handed for modified Kelvin Inversion;
- C3. It maps an unbounded physical domain to a bounded proxy domain and enables the solution for the velocity in the latter.