
 

Figure 1. Plasmonic nanotrapping system: (a)
illuminated array of metallic nanopillar pairs, (b)
computational domain with boundary conditions. 
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Abstract: We present a study of plasmonic-
based optical trapping of neutral sub-wavelength 
particles in proximity to illuminated metallic 
nanostructures.  We compute the dipolar force on 
the particles using 3D full-wave electromagnetic 
analysis, and perform parametric studies of the 
force as a function of the incident wavelength 
and background medium.  
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1. Introduction 
 

The interest in optical manipulation is 
growing rapidly, especially for bio-applications 
where the manipulated objects include viruses, 
cells and intracellular organelles [1-5]. While 
micron and sub-micron particles can be 
manipulated using conventional laser tweezers, 
the resolution of this approach is diffraction-
limited (~250 nm), and the high optical power 
and focusing of the laser beam can limit the 
exposure time of a trapped specimen. These 
limitations can be overcome using plasmonics 
[6,7], wherein sub-wavelength particles are 
manipulated using the enhanced near-field 
gradients that exist around illuminated metallic 
nanostructures.  In this presentation we discuss 
plasmon-based optical trapping of dielectric 
nanoparticles in proximity to illuminated 
metallic nanopillars (Fig. 1).   

 
2. The Numerical Model 
 

We use the COMSOL RF solver to compute 
the field distribution and dipolar force for the 
nanostructured system shown in Fig. 1a. This 
illustrates an array of paired gold nanopillars 
illuminated from above. In our actual model the 
nanopillars are on a glass substrate which is 
covered by H2O.  The computational domain for 
the analysis is shown in Fig. 1b. It spans 5 µm in 
the direction of propagation (z-axis), and 2 µm in 
both the x and y directions (Fig. 1b). The 
nanopillars are identical, and the pair is centered 
on the x-y plane (z=0) and aligned along the x-

axis.  The nanopillars have a diameter and height 
of 200 nm.  We apply perfectly matched layers 
(PMLs) at the top and bottom of the 
computational domain to reduce backscatter at 
these boundaries. The PMLs are 0.5 µm thick, 
which leaves 4 µm of physical domain along the 
z-axis. We impose perfect electric conductor 
(PEC) conditions at the boundaries perpendicular 
to the E field at x = ± 1 µm, and perfect magnetic 
conductor (PMC) conditions at the boundaries 
perpendicular to the H field at y = ± 1 µm. These 
boundary conditions ensure normal incidence of 
the respective fields at the boundaries transverse 
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Figure 2. TEM full-wave analysis at λ = 700 nm:
time-averaged electric energy density -<We> in x-
y plane 620 nm above the semi-shell. 

to the direction of propagation. They account for 
a 2D array of nanopillars pairs with a center-to-
center lattice spacing of 2 µm in both the x and y 
directions. Thus, we are studying the field due to 
a single element of a 2D array of nanopillar 
pairs.  

We analyze the optical trapping of sub-
wavelength particles by computing the time-
averaged dipolar force,  
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 [8]. Here, pR and pε  are the 

radius and relative permittivity of the particle, 
respectively, and  mε  is relative permittivity of 
the ambient medium (1 for air). The imaginary 
term in α  accounts for the scattering force on a 
particle, and it is important to note that the sign 

of this term (i.e. 32
3

ik± ) depends on the 

convention used in the time-harmonic analysis, 
i.e. exp( )i tω  or exp( )i tω−  [10]. The RF solver 
uses the exp( )i tω  convention, which is 
compatible with Eq.  (2). 
 The dielectric permittivity of the gold 
nanopillars is modeled using an analytical 
expression [11,12] 
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where the first and second terms are 
contributions from a Drude model, and 1( )G ω  

and 2 ( )G ω  are contributions from interband 
transitions, which are of the form 
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We compute the dipolar force exerted on a 
dielectric spherical particle above the pillars as a 
function of the wavelength of the illuminating 

wave. We illuminate the nanopillars with a 
downward directed uniform TEM plane wave 
with the E field along the x-axis. The incident 
field is generated by a time-harmonic surface 
current source positioned in the x-y plane 2 µm 
above the top surface of the semi-shell, i.e. at z = 
2 um (immediately below the upper PML). The 
magnitude of the surface current is chosen to 
provide a plane wave with a field magnitude of 
Ex = 2×106 V/m.  The FEA model comprised 
57,666 cubic vector elements with 1,094,940 
degrees of freedom.  

  
3. Results and Discussion 
 

We perform an initial simulation using an 
incident wavelength of λ = 700 nm.  A plot of 
the negative time-averaged electric energy 
density We−  at 620 nm above the surface of 
the substrate is shown in Fig. 2. This function is 
proportional to the dipolar gradient force 

potential -
2E , and we use it to identify 

potential regions of particle trapping.  

Specifically, the plot in Fig. 2 exhibits a central 
minimum, which implies particle 
trapping/confinement in this plane, i.e. the lateral 
optical forces act to keep a dielectric particle 



    
Figure 3. Time-averaged dipolar force
computed along the z-axis above the substrate.

Figure 4. Time-averaged dipolar force computed 
along the z-axis above the substrate for λ = 600, 
700 and 800 nm. 

near the z-axis. We explore this in more detail 
below.  

Next, we compute the time-averaged axial 
dipolar force Fz on nanoparticles along the z-axis 
as shown in Fig. 3. We assume that all particles 
have a relative dielectric permittivity εp = 2.25 
and a radius Rp = 100 nm. We compute the force 
for three different wavelengths λ = 600, 700 and 
800 nm (Fig. 4). Axial trapping points occur 
where Fz changes sign, i.e. from positive below 
the point to negative above it. Thus, below the 
point Fz acts to move the particle upward, 
whereas above the point Fz acts to move the 
particle downward. In Fig. 4 we identify such a 
points near z = 620 nm for λ = 700 nm. 

It is instructive to study the trapping force 
induced by the nanopillars when they are 
immersed in different media. Specifically, we 

consider the force on the particle described 
above when the pillars are isolated in air and 
water, respectively (Fig. 5). The changes of the 
ambient medium modify the axial dependence of 
the dipolar force. When the pillars are isolated in 
air,  the force exhibits a resonance at a 
wavelength λ = 600 nm and the trapping position 
is 0.4 µm (Fig. 5a).  When the ambient medium 
is water the resonance of the force shifts to λ = 
800 nm (Fig. 5b), although the trapping position 
at 0.2 µm is not accessible to the particle, i.e. it 
cannot squeeze between the pillars. The trapping 
position for the wavelength of 600 nm 
previously observed at 0.4 µm shifts to 0.3 µm. 
Note that the magnitude of the dipolar force 

decreases because the dielectric contrast between 
the particle and the ambient medium decreases. 
When the pillars are placed on a glass substrate, 
the magnitude of the force at 800 nm increases 
(Fig. 3) compared to the case without the 
substrate (Fig. 5). In addition, a trapping site at 
approximately 0.5 µm can be observed. It is 
therefore clear that the axial trapping position of 
a particle can be controlled by tuning the 
wavelength of the incoming light.  

To ensure that a particle is trapped at a point, 
the optical restoring force needs to be greater 
than the gravitational and Langevin forces. 
According to our estimations, the Langevin force 
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Figure 5. Dipolar force exerted on a 100 nm 
radius dielectric particle: (a) nanopilllars in air; (b) 
nanopillars in water.  



is much smaller than the optical trapping force 
when the particles are in water. Thus, aqueous 
environments, typically used for experiments 
with biological agents, are suitable for nanoscale 
optical trapping experiments.   
 
4. Conclusions 
 

Plasmonic-based optical trapping is its 
infancy and growing rapidly. Research in this 
area will significantly advance fundamental 
understanding in fields such as nanophotonics 
and biophotonics. Plasmonic optical trapping has 
advantages over conventional laser trapping in 
that it enables a higher spatial resolution, lower 
trapping energy, parallel trapping of multiple 
specimens, and a higher level of system 
integration, which holds potential for Lab-on-
Chip applications. Novel plasmonic trapping 
structures and systems can be designed and 
optimized using the COMSOL RF solver. This 
capability will facilitate the development of a 
new generation of systems for manipulating 
matter at the nanoscale. 
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