

COMSOL CONFERENCE 2017 BOSTON

Multiphysics and Multiscale Modeling of Heat Transfer during Fiber Drawing

Joshua Thomas, Jeff Crompton

and Kyle Koppenhoefer

AltaSim Technologies

Certified Consultan

Fiber drawing modeling process is multiphysics and multiscale

- Fiber drawing process produces large plasticity
- Plastic work produces heat
- Cooled via immersion in water bath
- Water pumped and cooled
- Fiber bundle thickness small compared to tank geometry

GEOMETRY

Process feeds fiber through tank and draws over pins

MULTIPHYSICS

Model includes 4 primary physics

- Fiber deformation / plasticity
- Fiber translation
- Heat transfer
 - Temperature-dependent plasticity
 - Heat source plasticity
 - Cooling forced convection
- Fluid dynamics
 - Pumping water
 - Flow induced by fiber translation

Solid mechanics calculates plastic strain

- Solved using plane strain model
- Contact between draw pins and fiber required for plasticity

Heat transfer requires convection in fiber

- Solid mechanics solved quasi-statically
- Velocity required for
 - Heat transfer equations
 - Power generated by plasticity (J/s)
- Plastic deformation introduces change in velocity
- Equations added to solve for "flowing fiber"

$$\begin{split} & \underbrace{\mathbf{0} = } \\ & \nabla \cdot \left[-\rho \mathbf{I} + \mu \left(\nabla \mathbf{u2} + (\nabla \mathbf{u2})^{\mathsf{T}} \right) \right] + \mathsf{F} \\ & \rho \nabla \cdot (\mathbf{u2}) = \mathbf{0} \end{split}$$

Heat produced by plasticity

- Heat source due to plastic strain
- Initial solution assumed convection constant to represent fluid
- Work extended to include fluid flow in tank (3-D)

Fluid dynamics

- Fluid flow for tank inlet and outlet included (3-D)
- Fluid flow induced by moving fiber included

Process includes range of length scales

- Fiber diameter: 60 μm
- Fiber bundle width: 150 mm
- Tank size: 1.5 m x 1.5 m x 1 m

Multiple models required to solve

- Mechanical analysis: plane strain
- Fluid dynamics analysis: three-dimensional
- Plane strain and 3-D models sequentially coupled via heat source and velocity

RESULTS

Plastic strain produced by drawing

Fiber heats due to plastic deformation

Convection HTC – Fluid Flow Analysis

Difficult to remove heat from low thermal conductivity materials

Summary

- Multiphysics and multiscale problem solved
- Heating of fiber due to plastic deformation calculated (w/ temp dep mat props)
- Design identified to cool fiber to desired temperature
- Temperature of outlet water calculated to size chiller

