COMSOL CONFERENCE 2017 ROTTERDAM

REACTIVE TRANSPORT MODELING OF CO₂ IN CARBONATE ROCKS: SINGLE PORE MODEL

*Priyanka Agrawal, Amir Raoof, Oleg Illiev and Mariette Wolthers

Agenda

- Motivation
- Single pore model
- Results
- Challenges
- Conclusions

Motivation

Single Pore Model

Results

Challenges

Conclusions

SINGLE PORE MODEL

MULTIPHYSICS MODEL

• Fluid flow

• Chemical Reactions

• Transport of diluted species

• Moving mesh

Motivation

Single Pore Model

Results

Challenges

Conclusions

SINGLE PORE MODEL

MULTIPHYSICS MODEL

• Fluid flow

• Chemical Reactions

• Transport of diluted species

• Moving mesh

Motivation

Single Pore Model

Results

Challenges

Conclusions

FLUID FLOW

Re << 1 📥 Laminar Flow 📥 Stokes Eq

$$\rho \frac{\partial u}{\partial t} + \nabla . p = \mu(\Delta u)$$
$$\nabla . u = 0$$

Boundary Conditions: Inlet: V(s) = Vmax * 4 * s * (1 - s) Outlet: Constant pressure

Motivation

Single Pore Model

FLUID FLOW

SINGLE PORE MODEL

MULTIPHYSICS MODEL

• Fluid flow

• Chemical Reactions

• Transport of diluted species

• Moving mesh

Motivation

Single Pore Model

Results

Challenges

Conclusions

CHEMICAL REACTIONS

Solution S	pecies Equilibri	um Reactio	on Keq		
CO ₂ (g)	$CO_2(g) = C$	O ₂ _aq	3.38*10	^-2	
CO ₂ _aq	CO ₂ _aq + 2	$H_2O = H^+ +$	HCO ₃ - 10^-6.3	5	
H+	$HCO_3 = H$	$^{+} + CO_{3}^{-2}$	4.69*10	^-11	
OH	$H_2O = H^+ -$	+ OH∙	1.023*1	0^-14	
CO ₃ -2	Reversible	reaction on	the surface of por	e boundarv	
HCO ₃ -			,	5	
Ca^{2+}		$CaCO3 \iff Ca^{2+} + CO_3^{-2}$			
-	$R_{\text{calcite}} = (k_1 a)$	$ \left[\begin{array}{c} R_{\text{calcite}} = (k_1 a_{\text{H}+} + k_2 a_{\text{CO2(aq)}} + k_3)^* \{1 - [(a_{\text{Ca2+}}^* a_{\text{CO3}}^{2^-})/K_{\text{eq}}] \} \\ (\text{Plummer et.al., 1978}) \end{array} \right] $			
Motivation	Single Pore Model	Results	Challenges	Conclusions	

SINGLE PORE MODEL

MULTIPHYSICS MODEL

• Fluid flow

• Chemical Reactions

• Transport of diluted species

• Moving mesh

Motivation

Single Pore Model

Results

Challenges

Conclusions

TRANSPORT OF DILUTED SPECIES

Advection-Diffusion-Reaction controlled transport

$$\frac{\partial ci}{\partial t} - \nabla . (D_i . \nabla ci) + u . \nabla ci = Ri$$

• Flux due to surface reaction $-n.(-Di.\nabla ci + u.ci) = Rcalcite$

• Inflow Condition: Danckwerts flux condition $-n.(-Di.\nabla ci + u.ci) = u.coi$

Motivation

SINGLE PORE MODEL

MULTIPHYSICS MODEL

• Fluid flow

• Chemical Reactions

• Transport of diluted species

o Moving mesh

Motivation

MOVING BOUNDARY

Motivation

Single Pore Model

Results

Challenges

Average flow velocity = $1 \mu m/s PV = 0$

Average flow velocity = $1 \mu m/s PV = 1620$

Average flow velocity = $1 \mu m/s PV = 3300$

After injection of same number of PV = 3300

After injection of same number of PV = 3300

Normalized displacement profile along pore wall for different flow velocity

CHALLENGES

Concentration gradient between pore fluid (pH 9.9) and injecting fluid (pH 4.4)
Flux based condition

CHALLENGES

• Concentration gradient between pore fluid (pH 9.9) and injecting fluid (pH 3.9)

Flux based condition

Concentration constraint condition

CHALLENGES – FLUX BASED CONDITION

CHALLENGES - FLUX BASED CONDITION

CHALLENGES

• Concentration gradient between pore fluid (pH 9.9) and injecting fluid (pH 3.9)

• High velocity impact on numerical stability

$$\square \operatorname{Pe} = \frac{u * h}{2 * D} > 1$$

G Fine Mesh

Time dependent step function for concentration of injecting fluid

Motivation

CONCLUSION

• Uniform dissolution for high flow velocity and non-uniform for low velocity

• Low flow velocity dissolves more for the same number of pore volumes

• High flow velocity dissolves in same duration of time.

• COMSOL – A strong multiphysics solver to couple moving boundary with reactions.

Motivation

THANK YOU