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Abstract: Numerical investigation of the catalytic monolithic converter (Pt/Al2O3 in oxygen rich exhaust) during 
highly dynamic conditions is addressed. A fundamental model was developed to incorporate a qualitative 
description of this process. To quantitatively gain an accurate prediction of the exhaust gas composition  kinetics 
steps of  heterogeneous reactions over platinum were set up. A method to estimate and analyze the kinetic 
parameters of the mean field model from transient flow experiments by inverse modeling is proposed. These 
problems are known to be ill-conditioned and multimodal. Thus, indirect local optimization methods fail to give 
satisfactory solutions. To surmount this limitation, the use of a stochastic global optimization method, evolution 
strategy (ES), is presented. Sensitivity analysis was also performed to assess the relative importance of each 
reaction in determining the conversion.  
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1. Introduction  
 
Mathematical optimization can be used as a 
computational engine to generate the best solution 
for a given problem in a systematic and efficient 
way. In the context of monolithic converter 
systems, the parameter estimation problem (or 
inverse problem) is solved using partial differential 
equations (PDE)-based models of the physical 
system coupled with an optimization algorithm. 
These problems are usually underdetermined due to 
the lack of enough data to constrain a unique 
solution. Inverse modeling refers to the practice of 
using given experimental data to calibrate the 
model so as to reproduce the experimental results in 
the best way possible. The exact solution of inverse 
problems plays a key role in the development of 
dynamic models, which in turn can promote 
functional understanding at the system level.   
 If, reliable models were available to the 
industry, new exhaust line configurations could be 
tested rapidly and inexpensively [1]. In the last 
years, several models were proposed for the 
numerical simulation of catalytic converters 
reaching from a one-dimensional up to a three-
dimensional description [2, 3].  
 
2. Theory  
 
Common washcoat application methods leave most 
of the material in the corners, thus the assumption 
of an evenly distributed washcoat will be 
inaccurate. R.E. Hayes et al. [4] have  proven that it 
is crucial to implement a geometric monolith 
structure which represents the real appearance of 
the Diesel Oxidation Catalyst, DOC. Due to 
symmetry; the model domain Ω was reduced to a 
long prism cutting through one unit cell, cf. Figure 

1. The structure of the catalytic converter dictates 
splitting the model problem into two distinct and 
connected sub domains, one for the channel and one 
for the porous catalytic washcoat. The 
transformation from reactants to products involves 
transport of reactants by convective flow in the free 
channel and molecular diffusion towards the walls 
and into the porous washcoat, within which 
diffusion and surface reactions occur. Formed 
products subsequently diffuse out of the porous 
structure and are transported out of the reactor 
through the free channel. The mathematical theory 
and the scope of simulation given in C. Brinkmeier 
[5] and T.G. Chuah et al. [2], laid the foundation of 
the implemented model. 
 
2.1 Monolithic converter model 
 
The monolithic converter model was based on 
conservation equations for  mass, momentum, 
energy, and individual gas-phase species along with 
constitutive relations for momentum, heat, and 
species fluxes.   
 

 
Figure 1. Principle sketch of the domain Ω  with the 
portioned boundary 𝜕Ω = 𝜕Ωinlet ∪ 𝜕Ωoutlet ∪ 𝜕Ωwall .  
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These transport equations can be readily found in 
the fluid dynamics textbook of Bird et al. [6].  
 The flow in the free channel of the monolith is 
laminar for the whole range of exhaust gas 
velocities that are induced by the engine, which 
motivates a negligible compressibility; therefore the 
flow in the free channel sub domain was modeled 
by the incompressible Navier-Stokes equations: 
 
𝜌
𝜕𝐕

𝜕𝑡
= ∇ ∙  −𝑝𝐈 + 𝜇 ∇𝐕 +  ∇𝐕 𝑇  − 𝜌 𝐕 ∙ ∇ 𝐕 

𝐕 ∙ ∇= 0 

(1) 

 
where  𝑝  is the gas pressure, 𝐕  the gas velocity 
vector,  𝜇  denotes the dynamic viscosity, the gas 
density 𝜌 is treated by the ideal gas law, and the 
incompressibility imposed on the conservation of 
mass yielded the continuity equation. 
 In the porous sub domain, the flow variables 
and fluid properties are averaged over a control 
volume surrounding a point. This control volume is 
small compared to the typical macroscopic 
dimensions of the problem, but large enough to be 
representative of the averaged porous structure. The 
Brinkman equations govern the flow in the porous 
sub domain, for which the momentum transport 
within the fluid due to shear stresses is of 
importance: 
 
𝜌

𝜀

𝜕𝐯

𝜕𝑡
= ∇ ∙  −𝑝𝐈 +

𝜇

𝜀
 ∇𝐯 +  ∇𝐯 𝑇  −

𝜇

𝜅
𝐯   

𝐯 ∙ ∇= 0 

(2) 

 
where 𝜅 denotes the permeability and the porosity 𝜀 
is assumed to be constant and uniform over the 
entire washcoat. The flow velocities are defined as 
superficial volume averages, which are averaged 
unit volumes of the medium including both pores 
and matrix. Such a definition makes the velocity 
field continuous across the boundary between the 
porous and the free channel sub domain.  
 As for the temperature field, the energy balance 
in the free channel sub domain was implemented 
accordingly: 
 
𝜌 𝐶𝑝

𝜕𝑇

𝜕𝑡
= +∇ ∙  𝑘∇𝑇 − 𝜌 𝐶𝑝𝐕 ∙ ∇𝑇 (3) 

 
where 𝑇  is the temperature,  𝐶𝑝  and 𝑘  denotes the 
specific heat and thermal conductivity respectively. 
In the porous sub domain, the energy equation can 
be expressed with a single temperature variable, 
defined per unit volume of the medium, following 
the assumption that the pore fluid and solid matrix 
quickly reaches thermal equilibrium:   
 

 𝜌𝐶𝑝 
𝑠 𝜕𝑇𝑠

𝜕𝑡
= ∇ ∙  𝑘𝑠∇𝑇𝑠 − 𝜌𝐶𝑝𝐯 ∙ ∇𝑇

𝑠 +  1 − 𝜀 𝐴𝑠 𝑟𝑗

𝑁𝑗

𝑗

 −∆𝐻𝑗   
 
(4) 

 
where the effective heat capacity  𝜌𝐶𝑝 

𝑠  and the 
thermal conductivity 𝑘𝑠  are porosity, weighted 

functions of the gas and the solid phase properties. 
The Arrhenius type reaction rate expressions 𝑟𝑗  of 
the micro kinetic model are presented in Table 2.      
 For the free-flow sub domain, the mass balance 
gives the following convection and diffusion 
transport equations for the molar concentrations 𝑐𝑖: 
 
𝜕𝑐𝑖
𝜕𝑡

= ∇ ∙  𝐷𝑖∇𝑐𝑖 − 𝑐𝑖𝐕  

 
(5) 

In the porous sub domain, the molar concentration 
𝑐𝑖
𝑠  represents the intrinsic volume-averaged molar 

concentration of the species. The resulting mass 
balance for the porous sub domain is: 
 

𝜀
𝜕𝑐𝑖

𝑠

𝜕𝑡
= ∇ ∙  𝜀𝐷𝑖

s∇𝑐𝑖
𝑠 − ∇ ∙  𝑐𝑖

𝑠𝐯 +  1 − 𝜀 𝐴𝑠 𝜐𝑖𝑗 𝑟𝑗

𝑁𝑗

𝑗

 (6) 

 
where 𝐯 is the superficial volume-average velocity 
vector of the mixture and 𝐷𝑖s the effective diffusion 
coefficient in the complex pore system, which 
depends on the bulk diffusion coefficient and the 
porosity of the washcoat [7]. Using the values of 
the transport properties of the constituent species, 
the transport properties of the gas mixture were 
estimated from empirical mixture rules [8] and 
thermodynamic data [9].  
 The DOC model is subject to the following 
boundary conditions: At 𝜕Ωinlet  the normal inflow 
velocity, the concentrations and temperature are 
prescribed (Dirichlet boundary conditions), and at 
𝜕Ωinsulating  the velocity is zero and the concentrations 
and temperature fluxes are zero (Dirichlet and 
Neumann boundary conditions, respectively), and 
at 𝜕Ωsymmetry  the no penetration and vanishing shear 
stress as well as the concentrations and temperature 
fluxes are prescribed to zero (Neumann boundary 
conditions), and at 𝜕Ωinterior  continuity conditions 
are imposed, which assures that the fluxes in the 
normal direction are continuous across the 
boundary, and at 𝜕Ωoutlet  is a free boundary the 
pressure and normal stress as well as the diffusive 
concentration and conductive temperature fluxes 
are prescribed to zero (Dirichlet and Neumann 
boundary conditions, respectively). The 
mathematical descriptions of the boundary 
conditions are presented in Table 1.  
 
2.1 Micro kinetic model 
 
One of the most common ways to describe the 
surface reactions and the adsorption/desorption is 
the mean-field approach, where the reactions are 
average over the whole catalyst surface. The mean-
field kinetic model, with 7 reacting species and 17 
heterogeneous reactions, was described by Crocoll 
et al. [10] and Olsson et al. [11]. The reactions rate 
equations, presented in Table 2, are dependent on 
non-mobile surface fractional coverage 𝜃𝑖  for 
species 𝑖 defined accordingly: 
 



𝛤𝑐𝑎𝑡
𝜕𝜃𝑖
𝜕𝑡

= 𝐴𝑠 𝜐𝑖𝑗 𝑟𝑗

𝑁𝑗

𝑗

 (7) 

 
The initial surface coverage's were calculated from 
the Langmuir equilibrium isotherm equation stated 
as:  
 

𝜃𝑖 =
 𝐾𝑖𝑐𝑖 

1
𝑛

1 +   𝐾𝑖𝑐𝑖 
1
𝑛

𝑁𝑖

𝑖

 (8) 

 
where 𝐾𝑖  is the quotient of the adsorption and 
desorption rate constants and 𝑛 denotes the number 
of surface Pt-sites that the species chemisorbs to.    
 
2.2.1 Formulation of the inverse optimization 
problem 
 
The correct solution of inverse problems plays a 
key role in the development of dynamic models, 
which, in turn, can promote functional 
understanding at the systems level. Parameter 
estimation problems of nonlinear dynamic systems 
are stated as minimizing a cost function that 
measures the goodness of the fit of the model with 
respect to a given experimental data set. 
 The inverse parameter estimation is formulated 
here as a nonlinear optimization problem, where the 
mean field model´s kinetic parameters are 
calibrated by minimizing a suitable objective 
function based on the deviations between observed 
and predicted system response. The optimization 
process used includes three basic steps repeated 
until some predefined convergence criteria are 
satisfied. These steps are: (i) parameter 
perturbation, (ii) forward modeling; (iii) objective 
function evaluation.  
 The formulation of the objective function (or 
misfit function) from the maximum likelihood 
theory leads to a weighted least squares problem, 
taking the form: 
 
𝑄 𝒙 =    𝑊𝑖 ,𝑗   𝑦𝑝𝑟𝑒𝑑  𝒙, 𝑖 − 𝑦𝑜𝑏𝑠  𝑖  𝑗  

2
𝑚

𝑖=1

𝑛

𝑗=1

 (9) 

 
where the right-hand-side represents the deviation 
between the model-predicted 𝑦𝑝𝑟𝑒𝑑  and the 
corresponding observed 𝑦𝑜𝑏𝑠  mean gas channel 
composition at the outlet  ∂Ωoutlet  , using the 
calibration parameters 𝒙 . 𝑛  is the number of 
measurements over time within a particular set 

corresponding to the concentration of species 𝑗 , 
while 𝑚 denotes the number of different species. 𝑊𝑖,𝑗  
corresponds to the different weights taken to 
normalize the contributions of each particular 
measurement. 
 
2.2.2 Global optimization  
 
The optimization algorithm finds the optimum of 
the objective function 𝑄 𝒙  with upper and lower 
boundaries ( 𝑈𝐵  and 𝐿𝐵 ) on the calibration 
parameters 𝒙. With the above calibration parameters 
and constraints, the optimization problem is stated 
as the minimization of a weighted distance 
measure: 
 
𝑄min = min

𝐿𝐵≤𝑥𝑈𝐵
 𝑄 𝒙    (10) 

 
Because of the nonlinear, non-differentiable and 
constrained nature of the system dynamics, the 
problem is multimodal (non convex). Therefore, if 
the optimization problem is solved via local direct 
search methods, it is very likely that the solution 
found will be of local nature. One approach to 
surmount the non convexity of the optimization 
problems is the so-called multistart strategy, which 
uses a local method repeatedly, starting from a 
number of different initial decision vectors. 
However, this method becomes very inefficient, 
since the same minimum will eventually be 
determined several times, and global optimization 
methods which ensure better efficiency and 
robustness are preferably used instead [12]. 
 Global optimization methods can be roughly 
classified as deterministic and stochastic strategies. 
Stochastic methods for global optimization 
ultimately rely on probabilistic approaches. Given 
that random elements are involved, these methods 
only have weak theoretical guarantees of 
convergence to the global solution. However, in 
practice, one can be satisfied if these methods 
provide a very good solution in modest 
computation times. Furthermore, stochastic 
methods are usually quite simple to implement and 
use, and they do not require transformation of the 
original problem, which can be treated as a black 
box. This characteristic is especially interesting 
because very often the optimizer must be linked 
with a separate software package in which the 
process dynamic model has been implemented. 

 
Table 1. Boundary conditions for the monolithic converter model governing equations. 

 Mass Momentum Heat 

Inlet 𝑐𝑖 = 𝑐𝑖,0 𝐕 ∙ 𝐧 = 𝑉0 𝑇 = 𝑇0 

Outlet 𝐧 ∙  −𝐷𝑖∇𝑐𝑖 = 0 𝐧 ∙  −𝑝𝐈 + 𝜇 ∇𝐕+  ∇𝐕 𝑇  = 0, 𝑝 = 𝑝0 𝐧 ∙  −𝑘∇𝑇 = 0 

Interior1 𝐧 ∙  −𝐷𝑖∇𝑐𝑖 + 𝑐𝑖𝐕 = 𝐧 ∙  −𝜀𝐷𝑖
s∇𝑐𝑖

𝑠 + 𝑐𝑖
𝑠𝐯  𝐧 ∙  𝜇 ∇𝐕+  ∇𝐕 𝑇  = 𝐧 ∙  

𝜇

𝜀
 ∇𝐯 +  ∇𝐯 𝑇   𝐧 ∙  −𝑘∇𝑇 + 𝜌𝐶𝑝𝑇𝐕 = 𝐧 ∙  −𝑘𝑠∇𝑇𝑠 + 𝜌𝐶𝑝𝑇

𝑠𝐯  

Symmetry 𝐧 ∙  −𝐷𝑖∇𝑐𝑖 + 𝑐𝑖𝐕 = 0 𝐕 ∙ 𝐧 = 0, 𝐭 ∙  −𝑝𝐈 + 𝜇 ∇𝐕 +  ∇𝐕 𝑇  𝐧 = 0 𝐧 ∙  −𝑘∇𝑇 + 𝜌𝐶𝑝𝑇𝐕 = 0 

Insulating 𝐧 ∙  −𝐷𝑖∇𝑐𝑖 + 𝑐𝑖𝐕 = 0 𝐕 = 0 𝐧 ∙  −𝑘∇𝑇 + 𝜌𝐶𝑝𝑇𝐕 = 0 
1Washcoat/Channel boundary 



Table 2. Kinetic parameters of the NO, CO and C3H6 oxidation over the Pt/Al2O3 catalyst [10,11] and the determined 
calibration parameters.  

Reaction Reaction rate Parameter Value  Parameter estimation 
     

Adsorption      

O2(g) +  2 ∗ 
r1
  2O ∗ 𝑟1 = 𝐴1 exp  −

𝐸1

𝑅𝑇
 𝑐𝑂2 𝑔 

𝜃∗
2 𝐴1   m3s−1m−2  11 4.2 ∙ 101 

  𝐸1   kJmol−1  0  
NO(g) + ∗ 

r3
   NO ∗ 𝑟3 = 𝐴3 exp  −

𝐸3

𝑅𝑇
 𝑐𝑁𝑂 𝑔 𝜃∗ 

𝐴3   m3s−1m−2  138 1.69 ∙ 101 

  𝐸3  kJmol−1  0  
NO2 g + ∗ 

r5
   NO2 ∗ 𝑟5 = 𝐴5 exp  −

𝐸5

𝑅𝑇
 𝑐𝑁𝑂2 𝑔 

𝜃∗ 
𝐴5   m3s−1m−2  68 1.71 ∙ 101 

  𝐸5    kJmol−1  0  
CO(g) + ∗ 

r7
  CO ∗ 𝑟7 = 𝐴7 exp  −

𝐸7

𝑅𝑇
 𝑐𝐶𝑂 𝑔 𝜃∗ 

𝐴7   m3s−1m−2  141  

  𝐸7    kJmol−1  0  
CO2(g) + ∗ 

r9
  CO2 ∗ 𝑟9 = 𝐴9 exp  −

𝐸9

𝑅𝑇
 𝑐𝐶𝑂2 𝑔 

𝜃∗ 
𝐴9   m3s−1m−2  0.67  

  𝐸9   kJmol−1  0  
H2O(g) + ∗

r11
   H2O ∗ 𝑟11 = 𝐴11 exp  −

𝐸11

𝑅𝑇
 𝑐𝐻2𝑂 𝑔 

𝜃∗ 
𝐴11    m3s−1m−2  157  

  𝐸11    kJmol−1  0  
      
Desorption      

2O ∗ 
r2
  O2(g) +  2 ∗  𝑟2 = 𝐴2 exp −

𝐸2 1 − 𝛼2𝜃𝑂 

𝑅𝑇
 𝜃𝑂

2  
𝐴2   mols−1m−2  2 ∙ 1010 1.31 ∙ 1010 

  𝐸2 0     kJmol−1  200  
  𝛼2   −  0.10 2.51 ∙ 10−1 
NO ∗ 

r4
  +  NO g + ∗   𝑟4 = 𝐴4 exp  −

𝐸4 − 𝛼4𝜃𝑂
𝑅𝑇

 𝜃𝑁𝑂  𝐴4  mols−1m−2  2 ∙ 1011 7.57 ∙ 1011 

  𝐸4 0    kJmol−1  114  
  𝛼4   kJmol−1  10 3.47 ∙ 102 
NO2 ∗ 

r6
  +  NO2 g 

+ ∗   𝑟6 = 𝐴6 exp −
𝐸6 1 − 𝛼6𝜃𝑂 

𝑅𝑇
 𝜃𝑁𝑂2

 
𝐴6   mols−1m−2  2 ∙ 108 9.28 ∙ 107 

  𝐸6 0    kJmol−1  72  
  𝛼6   −  0.075 4.37 ∙ 10−2 
CO ∗ 

r8
  CO(g) + ∗  𝑟8 = 𝐴8 exp  −

𝐸8 − 𝛼8𝜃𝐶𝑂
𝑅𝑇

 𝜃𝐶𝑂  𝐴8   mols−1m−2  2 ∙ 1011  

  𝐸8 0    kJmol−1  146  
  𝛼8   kJmol−1  33  
CO2 ∗ 

r10
   CO2(g) + ∗  𝑟10 = 𝐴10 exp  −

𝐸10

𝑅𝑇
 𝜃𝐶𝑂2

 𝐴10  mols−1m−2  2 ∙ 108  

  𝐸10    kJmol−1  27  
H2O ∗ 

r12
   H2O(g) + ∗  𝑟12 = 𝐴12 exp  −

𝐸12

𝑅𝑇
 𝜃𝐻2𝑂

 𝐴12    mols−1m−2  2 ∙ 108  

  𝐸12    kJmol−1  40  
Surface reactions      

NO(g) +  O ∗ 
r13
   NO2 ∗ 𝑟13 = 𝐴13 exp  −

𝐸13 − 𝛼13𝜃𝑂
𝑅𝑇

 𝑐𝑁𝑂 𝑔 𝜃𝑂 𝐴13    m3s−1m−2  104 7.25 ∙ 101 

  𝐸13 0    kJmol−1  35  
  𝛼13      kJmol−1  14 25.03 
NO2 ∗  

r14
   NO(g) +  O ∗  𝑟14 = 𝐴14 exp  −

𝐸14

𝑅𝑇
 𝜃𝑁𝑂2

 𝐴14    mols−1m−2  2 ∙ 108  

  𝐸14    kJmol−1  51  
CO ∗ + O ∗ 

r15
   CO2 ∗ + ∗ 𝑟15 = 𝐴15 exp  −

𝐸15 − 𝛼15𝜃𝐶𝑂
𝑅𝑇

 𝜃𝐶𝑂𝜃𝑂 𝐴15    mols−1m−2  4 ∙ 104  

  𝐸15 0    kJmol−1  108  
  𝛼15    mols−1m−2  33  
CO2 ∗ + ∗  

r16
   CO ∗ + O ∗ 𝑟16 = 𝐴16 exp  −

𝐸16 + 𝛼16𝜃𝑂
𝑅𝑇

 𝜃𝐶𝑂2
𝜃∗ 

𝐴16    mols−1m−2  2 ∙ 108  

  𝐸16 0   kJmol−1  155  
  𝛼16   (kJ/mol) 45  
1

3
C3H6 g +  3O ∗ 

r17
   CO2(g) + H2O g  𝑟17 = 𝐴17 exp  −

𝐸17 − 𝛼17𝜃𝑂
𝑅𝑇

 𝑐𝐶𝐻2
𝜃𝑂   𝐴17    m3s−1m−2  104 1.75 ∙ 1010 

  𝐸17 0  (kJ/mol) 95  
  𝛼17   (kJ/mol) 45 7.10 ∙ 103 

 

 There exists several stochastic methods for 
global optimization, and the one used in this paper 
is the Differential Evolution (DE) method as 
presented by Storn and Price [13, 14]. The DE 
algorithm is a population based algorithm like 
genetic algorithms using the similar operators; 
crossover, mutation and selection. The main 
difference in constructing better solutions is that 
genetic algorithms rely on crossover while DE 
relies on mutation operation. This main operation is 
based on the differences of randomly sampled pairs 
of solutions in the population. The algorithm uses 
mutation operation as a search mechanism and 
selection operation to direct the search toward the 
prospective regions in the search space. The DE 

algorithm also uses a non-uniform crossover that 
can take child vector parameters from one parent 
more often than it does from others. By using the 
components of the existing population members to 
construct trial vectors, the recombination 
(crossover) operator efficiently shuffles information 
about successful combinations, enabling the search 
for a better solution space [15, 16]. 
 
2.2.3 Calibration parameters 

 
The main calibration parameters studied were the 
kinetic parameters of the mean field model, i.e. the 
pre-exponential factors 𝐴𝑖  and the linear activation 
energy correction factors 𝛼𝑖 , presented in Table 2. 



Only the kinetic parameters of the individual 
overall heterogeneous reactions which concern the 
NO and C3H6 oxidation were considered, since no 
reliable experimental observations were available 
regarding the CO oxidation. Further, to ensure that 
the global gas phase equilibrium of the NO 
oxidation holds in any case, the reaction rate 
constant 𝑘14  was calculated from a thermodynamic 
relationship [17]. Thus, the inverse optimization 
problem consists of total number of 13 calibration 
parameters to be determined. The orders of 
magnitude of the calibration parameters were 
approximately estimated with micro kinetic 
analysis [18] and used as initial point.  
 
3. Solution methodology  
 
The commercial finite element software, COMSOL 
Multiphysics version 3.5a, was used in this study 
for solving the system of partial differential 
equations. The ability to interface with 
programming languages like MATLAB, enables a 
COMSOL-generating M-file (readable in either 
MATLAB or COMSOL script) to be converted into 
a function that may be called as a "black box" by an 
optimization routine [19]. Running this M-file in 
MATLAB, the FEM structure is created in 
MATLAB's workspace, and includes all 
information about the model's geometry, governing 
equations, boundary conditions, and solution 
parameters. This functionality forms the basis of the 
COMSOL-MATLAB linkage and enables to write 
MATLAB routines that can extract relevant 
information from the FEM structure automatically.  
 In order to solve the inverse problem, 
MATLAB must be able to recognize which 
parameters of the COMSOL file it should alter. 
This was realized through overwriting the constants 
in the FEM structure [20]. For every calibration 
variable set (corresponding to one individual in the 
population) one function evaluation was performed. 
The outcome of DE is much dependent on the size 
of the population, due to the weak theoretical 
guarantees of convergence to the global solution, 
the bigger the more reliable result. But with large 
populations the forward model evaluations grows 
rapidly, and thus the computational time.       
 The objective function requires the forward 
model-predicted average gas channel composition 
at the outlet: 
 

  𝑐𝑖  ∂Ωoutlet
=

1

𝐴
 𝑐𝑖 𝑡,𝑿 𝑑𝐴

Ω

  (11) 

 

and was evaluated with the post processing function 
postint. 
 
 3.1 Implementation 
 
A one-way coupling was assumed such that the 
momentum Equations (1)-(2) are independent of the 
concentrations and the temperature governed by 
Equations (3)-(6). Consequently, a segregated 
solution method was employed. The resulting 
system of PDEs was solved using the direct 
UMFPAK routine on an ordinary PC with a 
triangular mesh composed of approximately 5500 
nodes. The majority of the simulations were 
completed under 100 s.  
 
4. Results and discussion  
 
The model predicted temporal conversion of the 
species NO, NO2 and C3H6 were calibrated with 
transient experimental data set performed at the 
Department of Chemical Engineering, Faculty of 
Engineering LTH, Lund University, with a heavy-
duty truck engine rig [21]. The initial conditions 
corresponding to these experimental case studies 
are presented in Table 2. When using one or two 
calibration parameters the objective function 
surface is easy to plot and the optimum can easily 
be verified. When using multiple calibration 
parameters, the objective function surface is 
difficult to visualize and another method has to be 
used. The optima were verified by plotting the 
variation in the objective function as a function of 
each calibration parameters. Figure 2 (diagonal) 
shows the convergence process for the kinetic 
parameters regarding the NO oxidation when 
calibrated with the (750/250) experimental data set 
using 500 individuals and 30 iterations. The 
convergence process pattern gives perspective of 
the calibration parameters sensitivity. An 
insensitive calibration variable provides the same 
contribution to the stated objective function for 
different values. According to the Figure 2, 
parameters 𝐴4  and 𝛼4  demonstrated no systematical 
convergence pattern in contrast to parameters 𝐴13 
and 𝛼13. One main advantage of the DE algorithm, 
is that objective function insensitive calibration 
parameters don’t affect the convergence in a 
negative manner as they would with an indirect 
optimization method. 
 The plots below the diagonal in Figure 2 show 
the kinetic parameters intercorrelation. 
 
 

Table 3. Initial values of the experimental data sets, corresponds to different speed/torque combinations (load points), used to 
determine the reaction kinetics [21]. 

Experiment 
(rpm/Nm) 

Flow 
(kg/h) 

Temp 
(°C) 

[O2] 
(%) 

[CO2] 
(%) 

[H2O] 
(%) 

[Ar] 
(%) 

[NO] 
(ppm) 

[NO2] 
(ppm) 

[CO] 
(ppm) 

[C3H6] 
(ppm) 

(750/250) 310 203 14.5 4.2 7.6 0.9 910 55 97 153 
(1000/250) 414 221 14.6 4.2 7.6 0.9 671 52 97 148 
(1500/250) 673 237 14.7 4 7.3 0.9 572 52 97 156 
(2000/250) 986 262 14.5 4.1 7.4 0.9 575 44 92 176 



 
 

Figure 2. Scatter plots from the case studies used for parameter ranking. Diagonal: Normalized objective function on the y-
axis and the normalized parameter variation on the x-axis. The final generation is colored black. 

A clear intercorrelation between 𝐴13  and 𝛼13  is 
presented, which is to be expected since they appear 
in the same Arrhenius-type reaction rate expression. 
On the contrary, no intercorrelation between 𝐴4 and 
𝛼4 can be observed, which is a consequence of the 
parameters weak objective function sensitivity. To 
gain sufficient accuracy in the model calibration 
process, all the data in the experimental data sets 
(750/250), (1000/250) and (1500/250) were used. 
Three experimental data sets triple the function 
calls, when every individual needs to be evaluated  
for the respective initial values, which consequently 
multiply the computational time. The results from 
the calibration process are graphically presented in 
Figure 3, and the calibrated kinetic parameters are 
presented in Table 2. From Figure 3, it was 
concluded that the parameter estimation was 
successful, since the model predicted temporal 
average concentration and the observed 
measurements agree well. The calibration process 
was performed using 100 individuals and 30 
 

iterations with the total computational time 
approaching six days. The results from the model 
calibration confirmed the validity of the inverse 
modeling methodology but, in principle, provided 
no information about the quality of the forward 
model itself. The forward model was validated 
against the experimental data set (2000/250), cf. 
Figure 3. The validations of the calibrated kinetic 
parameters show reasonable accordance. The 
explanation of the derivation of the model predicted 
and the experimental observed concentrations is out 
of scope of this paper.  
 
5. Conclusions 
 
In this paper, a methodology for catalytic converter 
parameter estimation has been presented. The PDE-
based forward model was implemented in 
COMSOL Multiphysics, which provides a seamless 
interface into MATLAB. This functionality formed 
the basis of the inverse modeling framework.  
 

 

Figure 3. Comparison between the experimental observed and the model predicted outlet concentrations. Observed [NO2] 
(○); [NO] (□); [C3H6] (◊). Predicted [NO2] (---); [NO] (···); [C3H6] (—). 



 The ill-posed nature makes inverse problems 
challenging and special care must be taken in 
choice of optimization method to use. The applied 
evolutionary strategy was able to successfully solve 
the inverse problem associated with the mean field 
model. A possible drawback of ES methods, in 
spite of these good results, is computational effort 
required. However, it is well known that many 
stochastic methods, including ES, lend themselves 
to parallelization very easily, which means that this 
problem could be handled in reasonable time by 
suitable parallel versions.    
 A graphic method for confirming that the 
optimum has been reached was presented. From 
these scatter plots, the sensitivity of the calibration 
parameters could easily be studied as well as the 
parameter intercorrelation. Objective function 
sensitive calibration parameters showed trends in 
the scatter plot and they could be ranked according 
the size of the effect. This methodology has proven 
powerful when studying chemical pathways, but 
can easily be applied for solving a wide variety of 
PDE-based inverse problems.  
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