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Abstract: Thermal-mechanical analysis of rock is 

analyzed by isotropic damage mechanics. The 

simulation is implemented by equation-based 

modelling interface and Heat Transfer in Solids 

interface. The mechanical analysis is carried out in 

Weak Form PDE interface in combination with 

Domain ODE interface and Helmholtz Equation 

interface. The historical dependent damage variable is 

specially treated by Previous Solution solver to ensure 

monotonic increasing property. The cooling induces 

significant thermal strain and correspondingly affects 

damage variable. This process is split into three steps 

in simulation: initial displacement loading of asperity, 

constant stress loading of asperity, thermal cooling of 

asperity. The evolution of damage is captured in each 

stage to analyze the degradation of asperity in 

geothermal systems.  
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1. Introduction 

Fracture as a major factor which greatly affects 

the fluid flow, heat recovery in subsurface. Natural 

fractures are usually maintained by asperity self-

propping (The size of asperity varies from tens of 

nanometers to several millimeters). The in-situ stress 

loading on fractures are balanced by contacting 

asperity pairs. In some engineering projects, e.g., 

enhanced geothermal systems, the cold water is 

pumped into deep formation (usually larger than 3km) 

and then transfers heat with in-situ hot rock in natural 

fractures. The significant temperature difference 

between the invading fluid and hot asperity induces 

the asperity stress change and the shrinkage of contact 

asperity [1]. At the same time, the overburden pressure 

loading on asperity remains the same. Hence, the 

vertical compression of asperity could take place 

under the effect of thermal shrinkage. This 

compression gives rise to damage of asperity pairs and 

reduces fracture aperture significantly.  

In this paper, an isotropic scalar damage 

constitutive law is implemented in COMSOL 

Multiphysics® and combined with Heat Transfer in 

Solids interface. The initial loading state of fracture 

asperity is implemented by Weak Form PDE interface 

without temperature effects. Then the cooling of 

asperity surface and stress evolution in asperity are 

simulated by segregated solver.  
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Figure 1. (a) Cold fluid flows through fracture with hot 

matrix rock [2], (b) asperity model to be simulated in this 

study. 

2. Governing equations 

 

2.1 Isotropic damage mechanics 

 

The model here implemented is an extension of 

the Solid mechanics interface in COMSOL 

Multiphysics® which is based on the standard 

momentum balance equation. For simplicity, inertial 

effects are here neglected, and displacements and 

strains assumed to remain small. This leads to the 

following governing equations:  
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In Eq. (1),   is the stress tensor and 
vF indicates 

the body forces, while in Eq. (2),   is the total strain 

tensor and u  are the displacements. These two 

equations are then complemented by appropriate 

boundary conditions and a constitutive law relating 

stress and strains to complete the problem definition. 

In description of local deformation of brittle 

material, e.g., concrete and rock, a popular class of 

constitutive law are based on continuum damage 

mechanics (CDM) [3]. CDM is a constitutive theory 

that describes the progressive loss of material integrity 

due to the propagation and coalescence of 

microcracks, micro-voids, and similar defects. These 

changes in the microstructure lead to a degradation of 

material stiffness observed on the macroscale. The 

simplest damage theory is achieved by the isotropic 

damage model with a single scalar variable. Isotropic 

damage models are based on the simplifying 

assumption that the stiffness degradation is isotropic, 

i.e., stiffness moduli corresponding to different 

directions decrease proportionally, independently of 

the direction of loading [4]. Correspondingly, the 

damaged stiffness tensor is expressed as 

 1 D C Cd
   (3) 

Where C is the elastic stiffness tensor of the 

intact material, 
dC  is the elastic stiffness tensor of 

damage material, and D  is the scalar damage variable. 

In the present context, 
sΕ  is the secant stiffness that 

relates the total strain to total stress, according to the 

formula 

 1 :Dd= C : Ce e      (4) 

Where   is nominal stress tensor, also used in 

Eq. (1), 
eε  is the elastic strain tensor. The effective 

stress tensor is defined as 

:C e     (5) 

The local response on the microscopic scale 

follows the Eq. (3)-(5). The macroscopic response of 

material under loading represents non-linear property 

and controlled by the evolution of damage variable D
. A loading function f  is introduced to specify the 

elastic domain and the states at which damage grows. 

   ,f         (6) 

The loading function depends on the strain tensor 

  and on a variable   that controls the evolution of 

the elastic domain. Physically,   is the largest strain 

level ever researched in the history of the material. 

Like plasticity theory,  , 0f    are in the elastic 

domain. Damage grows only if  , 0f   . In Eq. (6), 

  is the equivalent strain, a scalar measure of the 

strain level. The definition of equivalent strain 

determines the shape of the elastic domain. For rock 

and concrete with very different behaviors in tension 

and in compression. Microcracks grow mainly if the 

material is stretched, and so it is natural to consider 

only normal strains that are positive and neglect those 

that are negative. Mazars definition of equivalent 

strain is used in this study [5] 

:        (7) 

Where McAuley brackets .  denote the 

“positive part” operator. After the spectral 

decomposition of strain tensor combined with 

“positive part” operator, the equivalent strain can be 

rewritten as 
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Where  1,2,3i i   is the principal strain 

component. The evolution of elastic domain is 

controlled by a set of loading/unloading conditions on 

the Karush-Kuhn-Tucker condition 

0f  , 0  , 0f     (9) 

The evolution of damage variable D  is also 

necessary to complement the loading/unloading 

damage process. At here, the damage function can be 

defined as 
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Where 
tD  and 

cD  are damage variables in 

tension and compression respectively. 
0  is the 

damage threshold. 
tA , 

tB , 
cA  and 

cB  are constant 

parameters controlling the shape of damage function 

curve.  

When considering both tensile and compressive 

damage, a general value of D  is obtained as a linear 

combination  

t t c cD D D     (12) 



Where the coefficients t  and c  take into 

account the character of the stress state. 
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The failure envelope of Mazars model is not 

realistic in the region of compression. A partial 

improvement is obtained if the equivalent strain is 

adjusted by the multiplicative factor 

 
3

2

1

3

1

I

I

I

I





















   (15) 

Where 
I I      are the negative parts of 

principal stresses. The adjustment is done only if at 

least two principal stresses are negative and none of 

them is positive.  

2.2 Heat conduction 

The temperature distribution  ,T x y  in asperity 

by cooling is obtained by heat conduction equation. 

Considering the instant propagation of heat and small 

size of fracture asperity, stationary heat conduction is 

solved 

2 0th T      (16) 

Where th  is thermal diffusivity of designated 

material.  

2.3 Thermal expansion 

The cooling of surface would induce thermal 

strain in material. The thermal strain is calculated by 

 refT T thε     (17) 

Where   is the coefficient of thermal expansion 

tensor. In this study,   is a diagonal matrix with same 

value under the assumption of isotropic material. 

If thermal strain is the only inelastic strain considered, 

the elastic strain in Eq. (4)-(5) can be defined 

 e thε ε    (18) 

3. Numerical consideration  

The isotropic damage model in section 2.1 has 

strong mesh dependency of the results. In this way, the 

results would be objective, meaning that the results do 

not converge to a single solution upon mesh 

refinement. To overcome this deficiency in finite 

element framework, two possible approaches are often 

mentioned [6]: 1. Use a stress-strain law that at each 

material point depends on the element size, 2. Add a 

localization limiter to the constitutive law so that the 

simulated localization zone corresponds to that 

observed experimentally. The implementation of these 

two approaches are referred to Gasch’s work [6].  

In this study, the local cracking direction or crack 

band width is not the point of interest. Therefore, non-

local model is used to alleviate mesh dependency. A 

localization limiter enforces a realistic and mesh-

independent size of strain softening region by 

supplying more information about the material 

structure to the constitutive law. A higher-order 

deformation gradient in the constitutive model is 

introduced to remedy the deficiency of mesh 

dependency [7]. The expression in Eq. (7) or (8) is the 

local equivalent strain in a certain material point. The 

localized deformation in quasi-brittle would induce 

discontinuous strain. The non-local equivalent strain 

in a material point is a weighted average of the local 

equivalent strain over the surrounding volume. The 

non-local equivalent strain   satisfy gradient damage 

formulation 

2c        (19) 

Where gradient parameter c  is of the dimension 

length squared, so that an internal length scale is 

present in the gradient formulation. Eq. (19) is 

complemented with natural boundary condition 

0  n    (20) 

4. Implementation in COMSOL 

Multiphysics® 

The implementation in COMSOL Multiphysics® 

is done by Heat Transfer in Soilds interface and 

equation-based modeling. The heat transfer in solids 

interface is used to obtain temperature distribution in 

the asperity. Then it’s invoked by weak form PDE 

interface to calculate thermal strain. Weak form PDE 

interface is used to implement isotropic damage 

model. The internal variables in stress analysis, i.e., 

stress and strain components, are defined in variable 

definition node. Then weak form of linear elastic 

material is derived and input into the interface. The 

variable   needs special consideration. Because it 

characterizes the non-linear and history dependent 

response of the damage model. Based on Eq. (9),   is 



monotonically increasing. A Domain ODE and DAEs 

interface is set up to calculate 
0  to ensure that 

0  is 

the maximum strain in previous calculation step. 

Previous Solution solver is needed to store value of 
0  

in last calculation step. In addition, the gradient 

formation is implemented by Helmholtz Equation 

interface with zero flux boundary condition to 

calculate non-local equivalent strain   in current 

calculation step. Then, the internal variable   is the 

maximum of 
0  and  . That is, current k is maximum 

value in previous maximum strain 
0 and current non-

local equivalent strain  .  

The geometry used in simulation is shown in Fig. 

2. Based on the involved physics introduced in section 

1, displacement and temperature boundary condition 

are set up respectively. For the displacement boundary 

setting, the bottom boundary condition is roller 

associated with zero horizontal movement in middle 

point, to release shrinkage in horizontal direction. The 

left and right sides boundary condition is natural 

boundary condition. The top boundary condition is 

stress boundary condition to simulate the in-situ stress 

loading on the asperity. For the temperature boundary 

setting, the boundary is thermal insulation, on the 

assumption that two contacting asperities has no heat 

flux in contact region. It’s reasonable for same size of 

contacting asperities. The top boundary is Dirichlet 

temperature condition with 
initT .  The left and right 

sides boundary condition is Dirichlet temperature 

condition with 
waterT .  

The mesh info is also shown in Fig. 2. The total 

number of mesh is 3630. The minimum mesh size is 

0.026 mm, residing the two corners of bottom 

boundary. When the top surface is loaded, the two 

sharp corners would have stress singularity. To reduce 

this artificial effect, fillet tool is applied in the 

geometry construction.  

 

Figure 2. meshed asperity model used in simulation. 

5. Simulation results 
 

5.1 Mechanical analysis  

Before the injection of cold water, the fracture 

asperity is subject to in-situ stress. Hence, the initial 

state of asperity is analyzed first to get insight in the 

initial deformation of asperity and damage state.  

The stress loading on top of asperity is not 

equivalent to in-situ stress. There’s the mapping 

relation between in-situ stress and stress on asperity: 

[8] 

2.46

0.54

v pP



   (21) 

Where 
pP  is the pore pressure at the depth of the 

asperity, 
v  is the in-situ tectonic stress, and  is the 

effective stress on the asperity.  
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Figure 3. (a) Stress and strain correlation with displacement 

loading condition, and (b) corresponding internal variable 

  and non-local equivalent strain. 3

1 0.86 10    is the 

strain corresponding to 15MPa   as initial condition for 

thermal-mechanical analysis. 30.66 10c
   is the start 

point of nonlinear stage.  

In Fig. 3a, stress drop abruptly at strain 

1.2 × 10−3. After that point, asperity loss bearing 



capacity and most elements are damaged. Before that 

point, two segments can be observed but not 

noticeable. The first segment is linear stage and the 

second segment is hardening stage. The bounding line 

is not noticeable. But it can be inferred from Fig. 3b. 

the damage threshold 
0 is 0.1 × 10−3, which means 

no damage if  is equal to 
0 . The initiation point of 

damage is 30.66 10c
  . With vertical strain 

larger than
c ,  increase monotonically. After most 

elements are damaged,  asymptotically reaches to a 

historical maximum, 0.012.  

The geothermal systems are in the 3km ~5km. 

The corresponding loading stress on asperity is in the 

range of 2MPa ~ 7.5MPa based on the mapping 

expression Eq. (21). Notice that the stress calculated 

from Eq. (21) is for semi-spherical asperity. For the 

plane stress condition in this simulation with unit 

thickness in the third direction., the loading stress 

corresponding to 4 MPa in circular contact is 

approximately 15 MPa Therefore, the stress and strain 

in the initial condition are 15MPa and 0.86 × 10−3 

respectively. The damage contour of initial condition 

is presented in Fig. 4.  

 

Figure 4. (a) Tensile damage variable 
t tD  at 

15MPa  , (b) compressive variable 
c cD  at 

15MPa  , and (c) total damage variable D  at 

15MPa  . 

The tensile, compressive and total damage 

contour is displayed. At this stress condition, stiffness 

most element away from the boundary condition 

degraded a little. The tensile and compressive 

degradation dominates different regions. Tensile 

damage occurs near the circular surface of geometry, 

whereas compressive damage is centered on vertical 

direction aligned with the symmetric axis. This 

distinct distribution of tensile and compressive 

damage has significant effects on the thermal damage 

in following section.  

5.2 Thermal-mechanical analysis 

When cold water is pumped into the fracture, the 

high temperature difference between water 

temperature 
waterT  and initial hot rock temperature 

initT  would induce significant thermal strain. While 

the top of asperity is subjected to constant loading 

stress, the damage of asperity would induce vertical 

crushing of asperity.  

Heat Transfer in Solids interface is run first to 

obtain the temperature distribution within the asperity. 

The boundary setting for temperature is mentioned in 

section 4. The stationary temperature distribution is 

shown in Fig.5.  
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Figure 5. (a) Temperature distribution within asperity at 

steady state, (b) induced thermal strain distribution. The 

temperature difference in this display is at maximum, 300°C.  

The solution from former section is input into 

new stationary solver as initial value. For this 

stationary study, water temperature 
waterT  is ramped 

from 0°C to 300°C, corresponding to different 

distances to injection well. Because, the water is 

heated up gradually along flow direction. The display 

of maximum temperature difference is in Fig. 5. The 

 a
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stress and damage variation for different temperature 

difference (
init waterT T T   ) is presented in Fig. 6.  

Two stage of compression can be observed in 

Fig. 6a. The first stage has higher strain gradient than 

the second stage. The border point is 48cT C   . In 

combination with Fig. 6b, damage takes place in both 

stages, inferring from increasing internal variable  . 

The rapid increase of internal variable before 

48cT C    indicates more elements are degraded in 

first stage than that in second stage.  

 a
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Figure 6. (a) The vertical compression with response to 

temperature difference, (b) the internal variable   and non-

local equivalent strain  variation with temperature 

difference.  

The damage contour (Fig. 7) for thermal-

mechanical analysis is also presented to visualize the 

underlying mechanism of vertical deformation in Fig. 

6a. From Fig. 7b, damaged elements present in the 

corner of contact. This is the cracking initiation point. 

As temperature difference increases, crack propagates 

along radial direction. The circular low damage region 

new the bottom boundary is due to boundary setting. 

To improve the accuracy of this simulation, reasonable 

contact boundary should be set to analyze the effect of 

contact pressure on the asperity damage.  

The radial cracking in Fig. 7 is due to radial 

shrinkage induced by boundary cooling. In Fig. 5b, 

highest strain gradient is near the top corner of 

asperity, since the horizontal displacement of top 

boundary is constrained. The first principal strain at 

initiation point is shown in Fig. 8. The maximum first 

principal strain is at the corner to induce tensile 

damage of elements.  

 

Figure 7. Damage variable D  contour at (a) 24T C  

, (b) 48T C   , (c) 100T C    and (d) 

300T C   .  
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Figure 8. First principal strain and second principal strain 

distribution at 48T C   . 

The value of variable used in this simulation is 

listed in Table 1.  

Table 1. The variable used in the model 

Variable Value Units 

R 2.5 mm 

E 30 MPa 

ν 0.2 1 

α 6 × 10−8 1 ℃⁄  

ρ 2600 𝑘𝑔 𝑚3⁄  

𝐴𝑡 0.81 1 

𝐵𝑡  10450 1 

𝐴𝑐 1.34 1 

𝐵𝑐 2537 1 

𝜀0 1 × 10−4 1 

𝑇𝑖𝑛𝑖𝑡  350 °C 

𝑇𝑤𝑎𝑡𝑒𝑟  50 °C 

 

6. Conclusion  

A Thermal-mechanical model of rock is 

presented to analyze the potential damage of fracture 

asperity in geothermal systems. Isotropic damage 

model has been used to characterize the damage of 

rock. The thermal expansion is incorporated into the 

damage model in the cooling of rock. Two analysis 

have been conducted based on this model. The 

mechanical deformation of asperity under 

displacement loading condition and thermal-

mechanical deformation of asperity under stress 

control condition. It shows that asperity is already 

degraded in the high stress condition. When cooled by 

cold water, significant thermal strain induces radial 

cracking on the top corner of asperity and decrease its 

loading capacity significantly.  

Several improvements will be done to increase 

accuracy of this simulation. More realistic three-

dimensional model will be considered. In addition, 

contact pair setting is necessary to accurately track the 

deformation at the contact region, other than far from 

contact region. Damage variable and temperature can 

be fully coupled in those governing equations.  
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