



# Development of Microelectrochemical Methods for Differentiation of the Catecholamine Neurotransmitters

### Miguel Abrego, Mengjia Hu, Mahsa Lotfi-Marchoubeh, and Ingrid Fritsch Department of Chemistry and Biochemistry University of Arkansas

October 4, 2018

# OUTLINE

- Catecholamines as neurotransmitters
- CA Mechanism Reaction
- Modeling framework
- Application of electrochemical redox cycling towards the differentiation of neurotransmitters.
- Physics description
- Redox cycling of the catecholamines
- Results
- Conclusions
- References



# Catecholamines as Neurotransmitters

0.0040

0.0040

### Importance:

 Related to neurological disorders including Parkinson's disease, Huntington's disease, Tourette's syndrome and schizophrenia.

#### Detection

- Desired features:
  - High spatial and temporal resolution
  - Minimal tissue damage
- Electroactive
  - Electrochemical detection
- Similar structure
  - Difficult to differentiate





OH



Miguel Abrego Tello, Ingrid Fritsch, University of Arkansas, 10/04/2018

### **Modeling Framework**

$$\begin{aligned} \frac{\partial C_{1}}{\partial t} &= D\nabla^{2}C_{1} - k_{bb}C_{1}C_{4} + k_{fb}C_{2}C_{3} - k_{bb}C_{1}C_{8} + k_{fb}C_{2}C_{7} \\ \frac{\partial C_{2}}{\partial t} &= D\nabla^{2}C_{2} - k_{f}C_{2} + k_{b}C_{3} + k_{bb}C_{1}C_{4} - k_{fb}C_{2}C_{3} + k_{bb}C_{1}C_{8} - k_{fb}C_{2}C_{7} \\ \frac{\partial C_{3}}{\partial t} &= D\nabla^{2}C_{3} + k_{f}C_{2} - k_{b}C_{3} + k_{bb}C_{1}C_{4} - k_{fb}C_{2}C_{3} + k_{bb}C_{5}C_{4} - k_{fb}C_{6}C_{3} \\ \frac{\partial C_{4}}{\partial t} &= D\nabla^{2}C_{4} - k_{bb}C_{1}C_{4} + k_{fb}C_{2}C_{3} - k_{bb}C_{5}C_{4} + k_{fb}C_{6}C_{3} \\ \frac{\partial C_{5}}{\partial t} &= D\nabla^{2}C_{5} - k_{bb}C_{5}C_{8} + k_{fb}C_{6}C_{7} - k_{bb}C_{5}C_{4} + k_{fb}C_{6}C_{3} \\ \frac{\partial C_{6}}{\partial t} &= D\nabla^{2}C_{6} - k_{f}C_{6} + k_{b}C_{7} + k_{bb}C_{5}C_{8} - k_{fb}C_{6}C_{7} - k_{bb}C_{5}C_{4} + k_{fb}C_{6}C_{3} \\ \frac{\partial C_{7}}{\partial t} &= D\nabla^{2}C_{7} + k_{f}C_{6} - k_{b}C_{7} + k_{bb}C_{5}C_{8} - k_{fb}C_{6}C_{7} + k_{bb}C_{5}C_{4} - k_{fb}C_{6}C_{7} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} - k_{bb}C_{5}C_{8} + k_{fb}C_{6}C_{7} - k_{bb}C_{5}C_{8} + k_{fb}C_{6}C_{7} + k_{bb}C_{5}C_{4} - k_{fb}C_{6}C_{7} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} - k_{b}C_{5}C_{8} + k_{fb}C_{6}C_{7} - k_{bb}C_{5}C_{8} - k_{fb}C_{6}C_{7} + k_{bb}C_{5}C_{4} - k_{fb}C_{6}C_{7} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} - k_{b}C_{5}C_{8} + k_{fb}C_{6}C_{7} - k_{bb}C_{5}C_{8} - k_{fb}C_{6}C_{7} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} - k_{b}C_{5}C_{8} + k_{fb}C_{6}C_{7} - k_{bb}C_{5}C_{8} - k_{fb}C_{6}C_{7} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} - k_{b}C_{5}C_{8} + k_{fb}C_{6}C_{7} - k_{bb}C_{5}C_{8} - k_{fb}C_{6}C_{7} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} - k_{b}C_{5}C_{8} + k_{fb}C_{6}C_{7} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} - k_{b}C_{5}C_{8} + k_{fb}C_{6}C_{7} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} - k_{b}C_{5}C_{8} + k_{fb}C_{6}C_{7} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} - k_{b}C_{5}C_{8} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} - k_{b}C_{5}C_{8} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} - k_{b}C_{5}C_{8} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8} \\ \frac{\partial C_{8}}{\partial t} &= D\nabla^{2}C_{8}$$

Miguel Abrego Tello, Ingrid Fritsch, University of Arkansas, 10/04/2018

 $C_{4} = \begin{bmatrix} C_{ACDA}(x, y, t) \end{bmatrix} \qquad C_{8} = \begin{bmatrix} C_{ACNE}(x, t) \end{bmatrix}$ 

= 0.01 *m*M

# Previous Work

Application of Electrochemical Redox Cycling: Toward Differentiation of DA and NE



Modified figure, reprinted with permission from Hu, M.; Fritsch, I. "Application of Electrochemical Redox Cycling: Toward Differentiation of Dopamine and Norepinephrine", Anal. Chem., 2016, 88 (11), pp 5574–5578. Copyright 2016 American Chemical Society. Figure has been modified from original

- DA and NE exhibits different concentration profiles based on gap width and can be differentiated using this technique.
- NE has a greater dependence on gap width than DA.

# Physical Description 2000 µm



- E CA  $\rightleftharpoons$  OQ + 2e<sup>-</sup> + 2H<sup>+</sup>
- C OQ →LAC
- C'  $LAC + OQ \rightarrow CA + AC$

# **Redox Cycling of Catecholamines**



**O-quinone** Results E mechanism

(OQ)



- The collector efficiency of NE has a greater dependence on the gap width than DA. The different shape in the collector electrode response is due to the longer distances allowing the solution to diffuse away from the electrodes.
- DA and NE present a peak shape in the generator electrode due to mass transfer restrictions.

-2H+-2e⁻

+2H++2e<sup>.</sup>

Catecholamine

(CA)



- DA and NE rate constant differ by a factor of 7.5. This provides the opportunity to differentiate them because NE is almost **silent**.
- **Hysteresis** appears. Phenomenon that occurs when OQ diffuses away from the electrode to the solution resulting in no OQ at the surface to be reduced allowing OQ to be converted into LAC



- k<sub>fb</sub> and k<sub>bb</sub> were estimated using an equilibrium constant.
- Based on the estimated K<sub>eq</sub>, C mechanism shows no effect to the overall reaction.

### **Results** Experimental vs Computational Data



NE becomes "near silent" at 20 µm gap

Miguel Abrego Tello, Ingrid Fritsch, University of Arkansas, 10/04/2018

### Conclusions

- □ The catecholamines can be *distinguished* based on their different cyclization rates by redox cycling methods.
- □ **C mechanism** can be considered the most predominant mechanism, allowing the differentiation between the catecholamines.
- Additional studies are being developed to further minimize the probe dimensions to achieve lower detection limits.
- Adaptable for analysis in small spaces—probes for in vivo applications
- Electrochemical generation-collection at arrays: Investigation of chemistry through the relationship of space and time resulting from mass transfer and reaction kinetics
- Experimental verification of equilibrium constant is needed to refine simulations further

# **Acknowledgments**

- Fritsch Research Group
- Research was supported partially through the National Science Foundation (Grant CHE-1808286), the University of Arkansas Women's Giving Circle, and the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000.

# References

### E<sub>DA</sub>=0.65 V at pH 7.4 vs. Ag/AgCl(saturated KCl):

Song, Yuanzhi, et al. "The electrochemical behavior of dopamine at glassy carbon electrode modified by Nafion multiwalled carbon nanotubes." *Russian journal of physical chemistry* 80.9 (**2006**): 1467-1474.

### E<sub>NE</sub>=0.66 V at pH 7.4 vs. Ag/AgCl(saturated KCl):

Song, Yuanzhi. "Theoretical study on the electrochemical behavior of norepinephrine at Nafion multi-walled carbon nanotubes modified pyrolytic graphite electrode." *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* 67.5 (**2007**): 1169-1177.

### k<sub>DA</sub>=0.13; k<sub>NE</sub>=0.98; k<sub>EP</sub>=87 (s<sup>-1</sup>)

Ciolkowski, E.; Cooper, B.; Jankowski, J.; Jorgenson, J.; Wightman, R., Direct Observation of Epinephrine and norepinephrine Cosecretion from Individual Adrenal-Medullary Chromaffin Cells. *Journal of the American Chemical Society* **1992**, *114* (8), 2815-2821.

Arnsten, A. F. T.; Pliszka, S. R. *Pharmacology, biochemistry, and behavior* **2011**, *99* (2), 211-216.

# References

Arnsten, A. F. T.; Pliszka, S. R. *Pharmacology, biochemistry, and behavior* **2011**, 99 (2), 211-216.

### D=5.40×10<sup>-6</sup> cm<sup>2</sup>/s, k<sup>0</sup>=0.0034cm/s<sup>-1</sup>

Corona-Avendaño S., Alarcón-Angeles G., Ramírez-Silva M. T., Rosquete-Pina G, Romero-Romo M., Palomar-Pardavé M.; Journal of Electroanalytical Chemistry, **2007**,609(1), 17-26.