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Abstract: This paper presents a computationally ef-
ficient modeling framework for magnetostrictive material
based actuator devices. The equations governing the mag-
netoelastic system include the Navier’s equation and the
magnetostatic equations coupled through a computation-
ally efficient constitutive model for magnetostrictive ma-
terials. The resulting system of nonlinear equations is
solved using finite element analysis.

The utility of this framework is demonstrated by ap-
plying it to two different actuator geometries: (i) mag-
netostrictive rod actuator and (ii) cantilevered unimorph
beam actuator. The rod actuator is modelled in COM-
SOL Multiphysics using 2D axisymmetric magnetostric-
tion module whereas the unimorph beam is solved using
1D structural mechanics beam module. Both the models
are validated with existing literature. Finally, parametric
studies are performed on these actuators under different
current and pre-stress conditions to optimize the device
performance.

Keywords: Magnetostrictive Materials, Nonlinear
Constitutive Modeling, Galfenol, Rod and Beam Actua-
tors.

1 Introduction
Magnetostrictive materials are a class of ferromagnetic

materials that exhibit magneto mechanical coupling, i.e.,
they can stretch in the presence of external magnetic field
(Joule effect) or can be magnetized by applying stress (Vi-
lari Effect). These materials have several potential trans-
ducer applications like energy harvesting, torque sensing,
active vibration control etc. [1, 2]. Materials like Galfenol
and Terfenol-D are particularly lucrative due to their un-
usual ability to produce large magnetostriction strains in
the presence of moderate magnetic fields at room temper-
ature. Magnetostrictive material based transducer devices
are being developed through a combination of mathemat-
ical modeling and experimental characterization. How-
ever, owing to the nonlinear and coupledmagnetomechan-
ical behavior of these materials, majority of the existing
accurate nonlinear models are computationally inefficient
and thus are not conducive to device design.

Armstrong [3] formulated a model which uses integra-
tion about all possible magnetic moment orientations for
calculating bulk magnetization and magnetostriction with
an energy-based integral probability density function. In
order to improve the computational efficiency, he subse-
quently restricted the magnetic moment orientation to the
eight easy axes of Terfenol-D and used probability density
function in discrete form [4]. Atulasimha et al. [5] devel-
oped a constitutive model for Galfenol by summing the
contributions over 98 crystallographic directions as possi-
ble orientations. Evan and Dapino [6] proposed a discrete

energy averaged (DEA) model for Galfenol by summing
over the six easy axes orientations. Computational effi-
ciency was further improved by using a localized form of
anisotropy energy defined around each easy axis.

These models were also utilized in design and analy-
sis of magnetostrictive material based transducer devices.
Datta et al. [7] developed a quasi-static response of the
magnetomechanical cantilever for the sensor application.
Wun Fogle et al. [8] developed a planar magnetomechan-
ical rotation model to predict sensing performance of an
amorphous magnetostrictive material adhered to an alu-
minium cantilever beam and subjected to various loading
conditions. More recently, Shu et al. [9] utilized the dis-
crete energy-averaged (DEA) model to simulate the 1-D
dynamic response of Galfenol-driven unimorph actuators.
The DEA model was further utilized by Santapuri et al.
[10] to model the dynamic response of composite lami-
nate plate actuators with embedded magnetostrictive ma-
terials. Computational efficiency of this model was fur-
ther improved by Tari et al. [11].

In this work, a computationally efficient yet accurate
constitutive model is adopted [12] for Galfenol which is
developed by locally linearizing the total free energy about
each easy axis and subsequently utilizing energy averag-
ing techniques to obtain the net magnetization and mag-
netostriction. This coupled constitutive model is further
used for design and analysis of: (i) Galfenol rod actua-
tor and (ii) a unimorph Galfenol-aluminum beam actuator
using COMSOL Multiphysics. The results are compared
with existing models and experimental results for valida-
tion.

This paper is structured as follows: Section 2 presents
an overview of our locally linearized magnetomechanical
model. Section 3 presents the analysis of a Galfenol rod
actuator system actuated by an axial magnetic field. Sec-
tion 4 presents the formulation and analysis of the uni-
morph Galfenol-Aluminum cantilevered beam. Finally,
the results and contributions of this work are described in
Section 5.

2 Modelling of magnetostrictive material
medium

2.1 3D magnetomechanical governing equations

Consider a magnetostrictive medium occupying a vol-
ume V enclosed by the boundary ∂V and surrounded by
free-space V ∗. The complete magnetomechanical system
is governed by Navier’s equation (valid in V ), magneto-
static equations, i.e., Gauss’s law for magnetism and Am-
pere’s law in the absence of an electric field (Valid in
V ∪ V ∗) coupled with magnetomechanical constitutive
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equations. Navier’s equation in weak form is given by∫
V

[
T · δ S + ρ

∂2u
∂t2

· δu + c
∂u
∂t

· δu
]
dV =∫

∂V

t · δu d∂V +

∫
V

fB · δu dV (1)

where T and fB denote the stress tensor and and external
body force acting on the domain V . The traction vector t
acts on the boundary ∂V . Also, S and u are the represen-
tations for strain tensor and displacements of each point in
the domain V . The strain S is represented in terms of the
displacements u as

S =
1

2

(
∇u+∇uT

)
. (2)

Also, the magnetostatic governing equation in weak form
valid in the magnetic material medium and the surround-
ing free space is given by∫

E
gradδϕ · B dV = 0 (3)

where ϕ is the magnetic scalar potential, related to the
magnetic field H as −gradϕ = H. Also, E ≡ V ∪
V ∗ represents the Euclidean space R3 consisting of the
Galfenol actuator setup and the surrounding free-space.
Also, the nonlinear constitutive relations for stress and
magnetic flux in the form

T = C(S− λ(T,H)), B = µo(H+M(T,H)) (4)

where, C is the compliance matrix, λ(T,H) andM(T,H)
represent the magnetostriction tensor and magnetization
vector obtained from the computationally efficient consti-
tutive model developed in next subsection.

2.2 Overview of the magnetomechanical constitutive
model for single crystal Galfenol

Finite element implementation of transducer devices
made of complex materials like Galfenol with inherent
nonlinearities and coupling (as described by Eq.(4)), often
result in computationally inefficient models that are not
conducive to device design. In this work, a novel compu-
tationally efficient nonlinear model for Galfenol is utilized
to enable faster computational device design and analysis
[12]. Parameters taken for constitutive relation is listed in
table (1). An overview of this model is presented below.

Magnetostrictive material models are traditionally de-
veloped through constrained energy minimization [2, 13,
3]. The objective function is the constrained free energy

ψcons(m1,m2,m3, L) = ψanisotropy + ψzeeman

+ ψmagnetoelastic + L(m2
1 +m2

2 +m2
3 − 1)

(5)

where, m1,m2 and m3 represent the Cartesian compo-
nents of the magnetic moment orientation m such that
|m| = m2

1 +m2
2 +m2

3 = 1 and L is the Lagrange mul-
tiplier. The energy term ψanisotropy represents the mag-
netic anisotropy energy defined (for a cubic crystal struc-
ture) by

ψanisotropy = K1(m
2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1)

+K2m
2
1m

2
2m

2
3 (6)

whereK1 andK2 are the cubic anisotropy constants.
ψzeeman, i.e., the Zeeman energy is the energy due to the
applied/external magnetic field given by

ψzeeman = −µ0Ms(H1m1 +H2m2 +H3m3) (7)

where H1, H2 and H3 are the scalar components
of the applied magnetic field along [100], [010], and [001]
crystal directions, respectively. µo is the permeability of
free-space (universal constant) and Ms is the saturation
magnetization (a material constant). ψmagnetoelastic, i.e.,
the energy due to magnetomechanical interactions within
the material is given by

ψmagnetoelastic = −γσ 3
2
λ100

(
m1

2T1 +m2
2T2 +m3

2T3
)

− 3γσλ111 (m1m2T4 +m2m3T5 +m3m1T6)
(8)

where λ100 and λ111 are the magnetostriction constants in
< 100 > and < 111 > directions, respectively. Also, the
constant γσ is a scaling parameter which has been used
in the literature previously (for instance, see Atulsimha et
al. [2]).

In order to improve the computational efficiency of the
model, we perform a Taylor series expansion (up to de-
gree 2) of the objective function (5) about the easy axes.
We now specialize to Galfenol that has 6 mutually inde-
pendent easy axes orientations along < 100 >.

Let ck denote the unit vector along the kth easy axis (k
= 1,2,..6). Taylor series expansion of the objective func-
tion about each ck (truncated at degree 2) is given by

ψkcons =ψcons

∣∣∣
ck

+
∂ψkcons
∂mk

i

∣∣∣
ck
(mk

i − cki )

+
1

2

∂2ψcons
∂mimj

∣∣∣
ck
(mk

i − cki )(m
k
j − ckj ) +

∂ψcons
∂L

∣∣∣
ck

where ψkcons and mk denote the local objective function
and magnetic moment orientations defined in the kth do-
main. Noting that ∂ψ

k
cons

∂L

∣∣∣
ck

= 0, we obtain the localmag-
netic moment orientations using

∂ψkcons
∂mk

i

=
∂ψkcons
∂mk

i

∣∣∣
ck

+
∂2ψkcons
∂mk

im
k
j

∣∣∣
ck
(mk

j − ckj ) = 0 (9)

We simplify further by specializing to Galfenol wherein
cki c

k
j = 0 for i ̸= j. Equation (9) is solved to obtain

the magnetic moment orientations mk that minimize the
energy around the kth axis. The optimization problem is
further simplified by linearizing the constraint m · m ≈
m · c = 1. Thus the solution to (9) is reduced to the form

[K̃
k
][mk − ck] = [Bk], (10)

where Bk vector and modified K̃
k
matrix elements can

be written as:
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[Bk] =


µ0MsH1(1− c1

2) + [3λ100c1T1(1− c1
2) + 3λ111(c2T4 + c3T6)]

µ0MsH2(1− c2
2) + [3λ100c2T2(1− c2

2) + 3λ111(c1T4 + c3T5)]

µ0MsH3(1− c3
2) + [3λ100c3T3(1− c3

2) + 3λ111(c1T6 + c2T5)]



Kk
ij =

 2K(1− c2i + ci) + 3λ100Tii(c
2
i − 1), i = j(no sum)

3λ111Tij(c
2
i − 1) + 2Kcj , i ̸= j


In order to maintain the stability of the model without

sacrificing its efficiency in all direction,mk is normalized
as done by [14] and used as normalized m̃k in all future
calculations.

m̃k =
mk

|| mk ||
(11)

The model can sometimes result in singularity error which
is corrected by adding the modified constraintmk ·ck = 1
in the form

2K[c1(m1 − c1) + c2(m2 − c2) + c3(m3 − c3)] = 0

to each equation which in turn removes the singularity in
the problem.

Therefore, bulk magnetizationM can be calculated by
summing magnetic moment orientations over all domains

M =Msm =Ms

∑
k

k

ξan
k

m̃ (12)

whereMs represents saturation magnetization,
k

ξan is the
anhysteretic volume fraction of the kth domain defined by

k

ξan =
exp(−ψ

k

ω )
r∑

k=1

exp(−ψ
k

ω )

where, ω is the smoothing constant. The corresponding
magnetic flux density B can be calculated as

B = µo(H+M) = µo(H+Ms

∑
k

k

ξan
k
m) (13)

Table 1: Material parameters selected for Galfenol

Parameters Name Numerical Value Unit

(3/2)λ100 Magnetostrictive constant 255× 10−6 −

(3/2)λ111 Magnetostrictive constant −7× 10−6 −

µ0 Vacuum Permeability 4π × 10−7 Hm−1

Ms Saturation Magnetization 1.83/µ0 Am−1

K1,K2 Anisotropy Coefficient 3.6× 104,0 Jm−3

Ω Smoothing Constant 625 Jm−3

γσ Fit Constant 0.8 −

3 2-D axisymmetric rod actuator
In this section, magnetomechanical modeling of

Galfenol rod actuator using COMSOL Multiphysics ver-
sion 5.3a. The magnetostrictive rod system is solved
using the 2D axisymmetric stress-strain static analysis
and 2D axisymmetric magnetostatics interface coupled
through our locally linearized magnetomechanical consti-
tutive model. Solution procedure utilized in this work is
described in Figure 1.

Actuator Geometry: The rod actuator set-up is de-
scribed in Figure 2 consists of a cylindrical Galfenol rod

actuator of length 50 mm and 6 mm diameter, an axisym-
metrically wound current carrying coil inductor (which in-
duces magnetic field into the material), steel casing to pro-
vide flux return path and the surrounding air domain (ap-
proximated as free space) sufficiently large to ensure zero
magnetic pontetial at its outermost boundary. Also, the
bottom end of the rod is kept fixed, and the top end is free
to move.

Simulations results are verified against the COMSOL
Multiphysics built-in model (nonlinear magnetostrictive
transducer).
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Figure 1: Block diagram of coupled magnetoelastic model embedded in COMSOL

Figure 2: Schematic diagram of Galfenol rod actuator

Figure 3: 3D of the norm of magnetic flux density
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3.1 Simulation results
The COMSOL model is utilized to calculate magnetic

flux density and magnetostriction in the Galfenol rod for
different coil current inputs.

Figure 3 illustrates the output magnetic flux density for
an input coil current density J0=1×107 A/m2. We observe
an approximately uniformmagnetic flux density (≈ 1.6 T)
in the Galfenol rod. The closed iron flux path around the
Galfenol rod reduces leakage by allowing majority of the
magnetic flux lines to pass through it.
Furthermore, parametric studies are performed to obtain
characteristic λ-J0 and B-J0 plots at various pre-stress
(uniform compressive stress along the axis of the rod) and
coil current density values as illustrated in Figure 4.

As expected, an increase in input current density (at
zero pre-stress) leads to increase in magnetostriction and
magnetic flux density until the saturation wherein all the
magnetic moments orient along the axis of the rod (aligned
with magnetic field direction). However, with the increase
in pre-stress values magnetic moments tend to orient in a
direction perpendicular to applied stress. Thus, it is ob-
served that for nonzero pre-stress values higher magnetic
fields are required to magnetize the material (i.e., slower
saturation) which in turn leads to larger magnetostriction.
Saturation is observed at a current density J0 ≥ 1500
kA/m2 wherein all the moments are fully aligned with the
magnetic field direction, i.e., theGalfenol rod is fullymag-

netized. Furthermore, we observe that themaximum value
of saturation magnetostriction is 170.2 ppm for zero pre-
stress and 255 ppm for all other pre-stress values.

4 Composite unimorph bending actuator

In this section, a unimorph cantilevered beam actuator
is analyzed using the Euler-Bernoulli beam theory along
with our locally linearized constitutive model. Here a
uniform axial magnetic field is assumed to be generated
from a coil wound around the beam and is calculated us-
ing H = NI , where I is the input current, N is the coil
constant andH is the magnitude of applied magnetic field.
Furthermore, it is assumed that the change in magnetic
field caused by deformation of the beam is negligible.
Actuator Geometry: The unimorph cantilevered bend-
ing actuator set-up described in Figure 5 consists of a
Galfenol-aluminum composite beam of length 82 mm and
width 9mm and thickness 5.66mm (tg = 1.83mm and ts =
3.83 mm) are measured along x, y and z-axis respectively.
The unimorph is subjected to quasi-static magnetic field
along its longitudinal axis. Simulations are carried out in
COMSOL by performing the structural analysis of com-
posite unimorph using the 1D beam structural mechanics
module. Parameter taken for aluminium and Galfenol is
listed in table 2. Results are discussed in subsequent sec-
tions.

Table 2: Parameters used in the composite unimorph bending actuator

Parameters/Materials Galfenol Aluminum

ρ(kg/m3) 7870 2700

E (GPa) 63 70

ν 0.45 0.33

4.1 Derivation on the 1D weak form
In order to derive the weak form of our Euler-Bernoulli

beam governing equations, we define the displacement

vector u =

uxuy
 where ux and uy represent the x and y

components of the displacement vector.
where the standard displacement assumptions of the

Euler-Bernoulli beam theory (as shown in Figure 5) are
used, i.e.,

ux(x, y) = u0(x)− y
duy
dx

uy(x, y) = uy(x)

The normal strain along the axis, i.e., εxx is given by

εxx =
∂ux
∂x

= ε0 − y
d2uy
dx2

= ε0 − yκ

where ε0 is the mid-plane strain of the composite beam
and κ is the curvature of the beam about the z-axis.

The stress-strain relationships in the Galfenol and alu-
minum layers are given by

σxx =Eg(ε0 − yκ− λ) (Galfenol) (14)
σxx =Es(ε0 − yκ) (Aluminum Substrate) (15)

We now define the resultant force N and the resultant
momentM as follows:

N =

∫ b

0

∫ tg

−ts
σxxdydz,M =

∫ b

0

∫ tg

−ts
yσxxdydz (16)

These expressions are further simplified by substitut-
ing the constitutive relationships (14) - (15) into (16) and
integrating to obtain the following reduced expressions.
After integration above form ofN andM can be rewritten
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Figure 4: Actuator characteristics along axial direction for various pre-stress values

Figure 5: Galfenol-Aluminium laminated composite cantilever unimorph
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asN

M

 =

EeffectiveAeffective b(Es
t2s
2 − Eg

t2g
2 )

b(Es
t2s
2 − Eg

t2g
2 ) EeffectiveIeffective

ε0κ


+

−EgAgλ

Egb
t2g
2 λ

 (17)

Where

Eeffective =
(EgAg + EsAs)

(Ag +As)
, Aeffective = Ag +As,

and

Ieffective = Ig + Is +Ag(
tg
2
)2 +As(

ts
2
)2

.
Finally, the variational form (1) can be reduced to the

following 1D form∫ L

0

(
dδux
dx

N − d2δuy
dx2

M)dx =

∫ L

0

(δuxpx + δuypy)dx

(18)

for a catilevered beam deforming under the external loads
px and py (forces per unit length) acting along x and y
axes, respectively. Also, δux and δuy represent the x and
y components of the variational displacement δu. Expres-
sion (17) alongwith the λ−H constitutive relationship de-
veloped in Section 2 is fed through MATLAB LIVELINK
into COMSOL beam formulation. In our case, the beam is
subjected to only magnetic field, so all expression on the
right side of equation (18) reduce to zero. The simulations
results are discussed in the subsequent section.

4.2 Simulation results

The 1D beam model developed in COMSOL is uti-
lized to calculate tip displacement, bending strain εxx
in Galfenol and Aluminum substrate layers with varying
thickness ratio (tr = tg/ts) and magnetic field values,
respectively. The results agree well with the model pre-
sented by Datta et al. [7].

Effect of thickness ratio on normalized tip displace-
ment

Tip displacement of the unimorph beam is studied as a
function of varying Galfenol-to-substrate thickness ratio
tr. The results in Figure 6 show the existence of a crit-
ical thickness ratio beyond which the tip displacements
decrease with increasing thickness ratio. The tip displace-
ment is thus increasing with Galfenol volume fraction up
to the critical thickness ratio and theGalfenol sheet’s offset
from the neutral axis. As the sheet’s thickness increases
above the critical value, the neutral axis moves within the
sheet, thus reducing the bending displacement.

Effect of the passive layer thickness

Normal strain εxx at the top of Galfenol layer and at the
bottom of aluminum layer for varying magnetic field and
substrate thicknesses is illustrated in Figure 7. For a con-
stant aluminium thickness, strain in Galfenol layer in-
creases monotonically with the increase in the magnetic
field till saturation is reached as shown in Figure 7(a).
However, saturation strain increases with a decrease in
aluminium layer thickness.

Strain on aluminium surface as a function of varying
magnetic field and substrate thickness is plotted in Figure
7(b). In general, the magnitude of strain increases with
the increase in magnetic field until saturation. Further-
more, at a substrate thickness of 0.46 mm, a positive strain
is observed at all magnetic field values. However, as the
aluminium thickness increases, i.e., at ts =0.85 mm, 3.71
mm, and 7.43 mm, strain is largely compressive and in-
creases in magnitude with increasing magnetic field. This
can be explained by the fact that bending effect becomes
predominant compared to extension as the substrate thick-
ness increases.

5 Conclusion

A computationally efficient mathematical modeling
framework was developed for magnetostrictive material-
based transducer devices. A novel locally linearized
anhysteretic model was integrated with magnetostrictive
module in COMSOL Multiphysics 5.3a to study two dif-
ferent Galfenol actuator geometries, namely, a Galfenol
rod actuator and a Galfenol-aluminum composite beam
actuator.

The results obtained for the rod actuator were validated
using the COMSOL Multiphysics in-built model name as
Nonlinear Magnetostrictive Transducer. It was further
observed that the maximum value of saturation magne-
tostriction is 170.2 ppm for zero pre-stress and 255 ppm
for all other pre-stress values.

An extended Euler-Bernoulli beam theory was used for
analysis of the composite Galfenol-aluminum beam actu-
ator. The results agreed well with the experimental and
computational data presented in Datta et al.[7]. Paramet-
ric studies were performed for different Galfenol to sub-
strate thickness ratios and the strains in both the layers
were studied for different pre-stress values. It was ob-
served that the tip displacement was maximized at a criti-
cal thickness ratio of around 2. Also, it was seen that for
very small substrate thickness, the strain in this layer was
mainly extensional. However, with increase in thickness,
bending strains became predominant.
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Figure 6: Tip displacement of Galfenol-Alumnium cantilevered unimorph
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