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Introduction

Figure 1: Phenomenon of magnetostrictive materials

Magnetostrictive Materials are a class of smart materials that
exhibits coupling between magnetic and mechanical domains.

They undergo change in shape when subjected to external
magnetic field.
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Why their is need for Rare Earth Materials

� Ferromagnets.

Low magnetostriction ∼100 ppm.

� Rare earth materials(Terbium, Dysprosium).

Low curie point at room temperature.

� Rare earth alloys
Terfenol-D (TbxDy1−xFe2)

Maximum magnetostriction ∼1250 ppm.
Brittle in nature.

Galfenol (FexGa1−x)

Maximum magnetostriction ∼250 ppm.
High tensile strength.
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Potential Applications of Magnetostrictive Material

Figure 2: Applications of magnetostrictive material [Source: Olabi and Grunwald
(2008)]

and many more applications . . .
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Magnetostrictive bending actuator

1 Mudivarthi et al. (2008)

Developed 3D Bidirectional Magnetoelastic Model (BCMEM).
Computationally expensive model.

2 Graham et al. (2009)

Developed 2D Bidirectional Magnetoelastic Model (BCMEM).
Compuatationally efficient as compared to Mudivarthi et al.
(2008).

3 Cao et al. (2015)

Incorporates nonlinear magnetomechanical model.
Computationally expensive model.
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Objectives

a Computationally efficient modeling of magnetostrictive material.

b Design of magnetostrictive actuator.

Computational framework of 2D magnetostrictive rod actuator.

Finite element framework for 1D unimoprh bending actuator.
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Energies in Magnetostrictive material

ψ(ε,m) = ψanisotropy + ψmagnetoelastic + ψzeeman

where m, ε are the magnetic moment and elastic strain.

Figure 3: Magnetic domains

ψ(ε,mk, ξk) = Σkξ
k(ψk
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Locally Linearized Constitutive Model

Constrained Locally Linearized Constitutive Model:
In nonlinear model, a single energy expression is used for any
particle orientation whereas in this case a local energy expression is
analytically calculated about each easy axis ck = [c1, c2, c3],

ψcons(m1,m2,m3, L) =ψanisotropy + ψzeeman + ψmagnetoelastic+

L(m2
1 +m2

2 +m2
3 − 1)

Using Taylor series expansion upto second order differential.
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im
k
j

∣∣∣
ck
(mk

j − ckj ) = 0

[K̃
k
][mk − ck] = [Bk]

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 9 / 31



Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Locally Linearized Constitutive Model (cont.)
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Effect of prestress (σ) on nature of B-H curves

Figure 4: Comparison of magnetic induction (B) vs magnetic field (H) between the
nonlinear and locally linearized model along [100] at various prestress values.
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Effect of prestress (σ) on nature of λ-H curves

Figure 5: Comparison of magnetostriction (λ) vs magnetic field (H) between the
nonlinear and locally linearized model along [100] at various prestress values.
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Effect of magnetic field (H) on nature of B-σ curves

Figure 6: Magnetic Induction (B) vs stress (σ) along [1 0 0] at various
prestress values
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Effect of magnetic field (H) on nature of ε-σ curves

Figure 7: Strain (ε) vs stress (σ) along [1 0 0] at various prestress values
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Effect of stress

Figure 8: Effect of stress (σ) on magnetization and magnetostriction
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3D Magnetomechanical Governing Equations

General constitutive modelling of magnetostrictive materials
involves coupling between the magnetic and mechanical BVPs.

Navier’s equation in weak form is given by∫
V

[
T · δ S + ρ

∂2u

∂t2
· δu + c

∂u

∂t
· δu

]
dV =∫

∂V
t · δu d∂V +

∫
V

fB · δu dV

Also, the magnetostatic governing equation in weak form valid in
the magnetic material medium and the surrounding free space is
given by ∫

E
gradδφ · B dV = 0 (1)
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Applications of Transducer Design

� Applications of transducer

1 2D axisymmetric rod actuator.

2 Composite unimorph bending actuator.
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2D Axisymmetric Transducer Design

Schematic view of Galfenol rod actuator

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 18 / 31



Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Outline

1 Introduction

2 Literature Review

3 Objectives

4 Mathematical Modeling

5 Applications of Transducer Design

6 Rod Actuator Characteristics

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 18 / 31



Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Rod Actuator Characteristics

A. Magnetic Flux Distribution

Figure 9: 3D of the norm of magnetic flux density
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Rod Actuator Characteristics (cont.)

B. Strain Distribution

Figure 10: Axial strain distribution at various prestress values in Galfenol
rod (a) 0 MPa, (b) 15 MPa, (c) 30 MPa, (d) 45 MPa, (e) 60 MPa
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Rod Actuator Characteristics (cont.)

1. Magnetostriction (λ)-Current Density (J0)
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Figure 11: Magnetostriction (λ) vs current density (J0) for anhysteretic
model at various pre-stress values.
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Rod Actuator Characteristics (cont.)

2. Magnetic Induction (B)-Current Density (J0)

Figure 12: Magnetic induction (B) vs current density (J0) for anhysteretic
model at various pre-stress values.
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Composite Unimorph Transducer

Figure 13: Cantilevered composite magnetostrictive unimorph
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Composite Unimorph Transducer (cont.)

Figure 14: Beam cross-section

Weak form expression of 1D Euler-Bernoulli Beam∫ L

0
(
dûx
dx

N +
dû2

y

dx2
M)dx = 0
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Composite Unimorph Transducer (cont.)
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Bending Actuator Characteristics

Figure 15: Tip displacement of cantilevered Galfenol-Aluminium unimorph
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Bending Actuator Characteristics (cont.)

Figure 16: Free strain (εxx) on Galfenol surface
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Bending Actuator Characteristics (cont.)

Figure 17: Free strain (εxx) on aluminum surface
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Bending Actuator Characteristics (cont.)
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Figure 18: Comparison of normalized tip displacement as predicted by our
model and Datta et al. (2008)
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