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Abstract: The spatial dynamics of the invasion 

of new species and genetic dispersal is studied 

under the  presumption of rising temperature by 

using a coherent approach of coupled partial 

differential equations of the reaction diffusion 

type. The nonlinear reaction terms model the 

population dynamics, genetic exchange and 

competition. Temperature reaction norms of 

reproduction rates are conferred by a two allele 

system. The resulting non-linear initial boundary 

value problems are solved over geometries of 

heterogeneous landscapes. Geo-referenced 

model parameters, namely  mean temperature, 

elevation, habitat suitability and land use, are 

imported into COMSOL Multiphysics from a 

geographical information system. The model is 

applied to the invasion of species at the scale of 

southern Germany. The nonlinearities of the 

interaction terms give rise to a richness of spatio-

temporal dynamic patterns. Here we show how 

invasion processes in form of travelling waves 

are triggered by a temperature rise.  
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1. Introduction 
 

An "invasive species" is defined as a species 

that is non-native (or alien) to the ecosystem 

under consideration and whose introduction 

causes or is likely to cause economic or          

environmental harm or harm to human health 

(US Department of Agriculture). Changing 

environmental conditions and human activities 

have triggered species migration at a global scale 

causing biosecurity problems.  Species range 

limits involve many aspects of evolution and 

ecology, from species distribution and 

abundance to the evolution of niches. Theory 

suggests several processes by which ranges are 

affected, including competitive exclusion, and 

Allee effects [1]. With the increasing concern 

about species conservation, a need exists for 

quantitative characterization of species’ 

geographic range and their borders [2]. 

Particularly, with recent climate change several 

examples of range expansions have been 

reported [3], for instance in European butterflies 

[4]. Range retractions and extinctions occur as 

well but are often more difficult to detect [5] 

Range limits are correlated with a number of 

abiotic and biotic factors, including climate 

variables. 

The aim of this study was to analyse the 

mechanisms of invasion of a new species or a 

genetic trait by means of a highly aggregated 

mathematical model. The model was devised to 

fulfil several purposes. It should  

i) be amenable to a mathematical analysis for 

simple geometries, 

ii) give insights to the mechanisms of invasion 

and colonization under spatially varying 

temperature profiles subject to a general 

temperature trend, 

iii) be applicable in two dimensions at large 

landscape scales. 

As an example we used a dragonfly species that 

invaded most of central Europe during the last 

century, Crocothemis erythraea [6]. 

 

2. Governing Equations 
 

Notations 

ui: population density of species or biotype i 

D:   dispersion coefficient 

us: density threshold for dispersal 

ß(T): temperature (T) dependent growth rate 

ßmax: maximum growth rate 

µ i: mortality rate, the index refers to the       

species or biotype 

aij:   coefficient of competition between      

species (or biotype) i and species (or 

biotype) j  

Ai:    number of offspring of biotype i 

Excerpt from the Proceedings of the COMSOL Conference 2010 Paris

http://www.comsol.com/conf_cd_2011_eu


m: > 2, determines the steepness of the             

threshold of the dispersion coefficient 

 

The general form of a system of reaction 

diffusion equations for biological populations is 

given by 
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In the simplest case the spatial operator has the 

form 

uDuL ∇•∇=][    (2) 

 

However, dispersal depends on species 

density, and the diffusion constant might have 

the following form exhibiting a threshold effect. 
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Thus, diffusion takes place only if a density 

threshold us is surpassed. Note that this 

nonlinearity in the diffusion term might cause 

numerical problems.  

 

2.1 Competing species 

 

The reaction terms describe temperature 

dependent population growth (1st term) and 

competitive interaction between different species 

(2nd term).  
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)(Tiβ  denotes the temperature response 

function of species "i". The equations include an  

Allee effect, i.e. reproduction is decreased at low 

population size. This is achieved by the term  

ii

i

Ku

u

+
,  

which is controlling the growth rate in equation 

(3).  

 

2.2  Genetic spread 

 

Dispersal of genetic information involves 

population dynamic- and genetic processes. For a 

diploid species with three different genotypes 

(AA, Aa, aa) fertility rates as derived from 

Hardy–Weinberg Theory [7, 8] are 
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with 
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2.3 Temperature Reaction Norm 

 

Temperature response of growth rates is 

modelled by the O’Neill function [9], which is 

parameterized by the biological meaningful 

parameters Tmin, Topt, Tmax and Q10. For an 

example see Fig. 1. 















−

−















−

−
=

opt

opt

p

opt

i
TT

TTp
Exp

TT

TT
T

maxmax

max
max

)(
)( ββ

   (6) 

with ] 
W

40
 + 1 + [1W

400

1
 = p

22   

and  )T-T1)(-Q( = W opt10 max
. 

 

 

Figure 1. Temperature response of a recent invader in 

central Europe, the dragonfly Crocothemis erythraea. 

The dots depict measured values of growth rates, the 

grey line the fitted response curve. 

 

3. Use of COMSOL Multiphysics 

 

In order to simulate dispersal at the landscape 

scale, geographical information has to be linked 

with finite element methods. These comprise 

temperature fields and landscape structures (Fig. 

2). Geo referenced temperature data of 



southwestern Germany were imported from the 

WorldClim global climate data base 

(www.worldclim.org).  WorldClim is a set of 

global climate layers with a spatial resolution of 

1 km
2
 [10]. The temperature data were 

interpolated within COMSOL Multiphysics by 

use of the two dimensional linear interpolation 

option in the function menu (Fig. 3). Landscape 

structures were exported as shape files from 

ARCGIS and imported into the COMSOL 

environment using the „Export to CAD“ tool 

from ArcToolbox.  
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Figure 2. Linking geographical information and finite 

element methods. 

 

 
Figure 3. Temperature map of south west Germany 

and east France as derived from interpolation of 

WorldClim global climate data base. Interpolation was 

performed within COMSOL. 

 

 

 

 

 

 

 

 

4. Results 
  

4.1 Traveling wave solutions for linear and 

nonlinear dispersion  

 

The mode of dispersal is determined by the 

dependence of the coefficient of dispersal on 

density. If the coefficient is constant, traveling 

wave solutions are obtained with smooth wave 

fronts as shown in Fig. 4. This behavior is 

drastically changed in the case of the nonlinear 

dependence of dispersion on population density 

(Eq. 3). The wave fronts are sharp and dispersal 

is slower than in the previous case (Fig. 5). This 

nonlinearity causes numerical problems and 

requires fine mesh sizes and hence long 

computer time. 

 
Figure 4. Traveling wave fronts for constant 

dispersion parameter. 

 

 
Figure 5. If the dispersion parameter depends in a 

nonlinear way on population density (Eq. 3) sharp 

wave fronts occur. 

 



4.2 Invasion of species 

 

The upper Rhine valley plays an import role as a 

route for invasion of species from the south, 

since it is linked via the Bresse and the Rhone 

valley to the Mediterranean. The valley is 

surrounded by the Vosges and Black Forest so 

large temperature gradients at short distances 

occur (Fig. 3). Two species are considered: an 

indigenous species with a mean annual 

temperature optimum of 8 °C and an invading 

species with an optimum temperature of 11.5°C.   

The following scenario is considered. Initially, 

both species are distributed in a narrow region at 

the southern end of the Rhine valley. Their 

spatial temporal dynamics is followed for several 

years without any change in temperature. After 

the establishment of the populations, temperature 

is slowly increased. The simulations are based on 

equations 2, 4, and 6. The COMSOL program is 

set up for both species simultaneously, which are 

coupled via the competition term in equation (4).  

 

Figure 6. Invasion of a species with a high optimal 

temperature.  

 

Figure 6 shows a sequence of spatio-temporal 

dispersal patterns. Starting from a focal region in 

the south (Fig. 6, first row left), the species 

migrates to the north via the warm Rhine valley 

(Fig. 6 first row right and second row left). After 

a general temperature increase, the species starts 

to colonize also the mountainous regions (Fig. 6 

second row right). 

The case of a species with a lower 

temperature optimum is shown in Fig. 7. Starting 

from two foci in the Vosges and Black Forest 

mountains (Fig. 7, first row left) the population 

is spreading over the mountainous areas (Fig. 7 

first row right and second row left). After a 

temperature increase, this species is replaced by 

the invader with the higher optimal temperature. 

 
Figure 7. Invasion of a species with a low optimal 

temperature.  

 

4.3 Genetic Dispersal 

 
This simulation is based on equations 2, 5 

and 6. Three biotypes are considered whose 

optimal temperatures slightly differ. The 

parameter optimum temperature is subject to 

genetic transfer by means of the Hardy-

Weinberg mechanism (Eq. 5).  
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Figure 8. Dispersal of biotypes of one species 

differing with respect to their temperature optima. 

Genotype AA has a low optimal temperature, 

genotype aa has a higher optimal temperature and the 

heterozygote aA lies somewhere in between.  

 



According to their temperature response 

curves the different biotypes occupy different 

areas. Because of the genetic variation this 

species is insensitive against a climatic change in 

a certain temperature range.   

 

5. Discussion 
 

Reaction diffusion equations are capable of 

modelling dispersal of interacting populations or 

biotypes in dependence of temperature and other 

environmental variables. 

A temperature rise is able to trigger invasion 

of a new species or of genetic information in 

form of travelling waves. Species with a large 

variation of temperature response curves have a 

large tolerance range with respect to temperature 

increase. 

By importing landscape covers from a GIS 

into the COMSOL Multiphysics environment 

and interpolation of geo-referenced temperature 

data simulation of dispersal at large scales is 

feasible. 

Further research needs are related to  the 

embedding of COMSOL simulations into 

parameter estimation schemes.  

 

6. References  
 

1. Sexton, J. P., McIntyre, P. J., Angert, A. L. 

and Rice, K. J., Evolution and ecology of species 

range limits, Annual Review of Ecology, 

Evolution and Systematics 40: 415-436 (2009) 

2. Fortin, M.-J., Keitt, T. H., Maurer, B. A., 

Taper, M. L., Kaufman, D. M. and Blackburn, T. 

M., Species’ geographic ranges and 

distributional limits: pattern analysis and 

statistical issues, Oikos 108: 7-17 (2005) 

3. Parmesan, C., Ecological and evolutionary 

responses to recent climate change, Annual 

Review of Ecology, Evolution and Systematics 

37: 637-669. 

4. Parmesan, C., Ryrholm, N., Stefanescu, C., 

Hill, J. K., Thomas, C. D., Descimon, H., 

Huntley, B., Kaila, L., Kullberg, J., Tammaru, 

T., Tennent, W. J., Thomas, J. A. and Warren, 

M., Poleward shifts in geographical ranges of 

butterfly species associated with regional 

warming, Nature 399: 579-583 (1999) 

5. Thomas, C. D., Franco, A. M. A. and Hill, J. 

K., Range retractions and extinction in the face 

of climate warming, Trends in Ecology and 

Evolution 21: 415-416 (2006) 

6. Ott, J., The expansion of Crocothemis 

erythraea (Brullé, 1832) in Germany - an 

indicator of climatic changes. In: Tyagi, B. K. 

(ed.) Odonata: Biology of dragonflies. Scientific 

Publishers (India), pp. 201-222 (2007). 

7. Nisbet R. M., Gurney W. S. C., Metz J. A. J., 

Stage structured Models applied in Evolutionary 

Ecology. In: Applied Mathematical Ecology (eds 

Levin SA, Hallam TG, Grass LJ), pp.  428-449. 

Springer-Verlag, Berlin Heidelberg (1989) 

8. Richter, O., Spatio-temporal patterns of Gene 

Flow and Dispersal under Temperature Increase. 

Mathematical Biosciences 218: 15-23 (2009) 

9. Spain J. D. in BASIC Microcomputer Models 

in Biology.  Addison-Wesley, London 

Amsterdam Don Mills Ontario (1982) 

10. Jones and A. Jarvis, Very high resolution 

interpolated climate surfaces for global land 

areas, International Journal of Climatology 25: 

1965-1978 (2005) 

 

7. Acknowledgements 
 

This work was funded by the Deutsche 

Forschungsgemeinschaft within the priority 

programme 1162 “The impact of Climate 

Variability on Aquatic Ecosystems 

(AQUASHIFT)”. We thank Klaus Schmalstieg 

for technical assistance. 




