CERE Center for Energy Resources Engineering

Technical University of Denmark

COMSOL Implementation for Two-Phase Immiscible Flows in Layered Reservoir

> Xuan Zhang Center for Energy Recourses Engineering Technical University of Denmark

Outline

- Introduction
- Implementation
- Results
- Conclusion

Introduction

- Waterflooding
- Layered model of reservoir
- Non-/Communicating layers
- Anisotropy parameter

$$E = k_y x_0^2 / k_x y_0^2$$

- x_0 :Length
- \mathcal{Y}_0 :Height
- k :Permeability

Scheme of layered reservoir

Introduction

Implemention in COMSOL

Implemention in COMSOL

 $s_{out} = s_{wi}$

 $P_{out} = P_t$

Initial conditions

$$s(t_0) = s_{wi} \qquad P(t_0) = P_0$$

Boundary conditions

$$-n \cdot \Gamma = 0 \qquad -n \cdot \Gamma = 0$$

$$s_{in} = 1 - s_{or}$$

$$-n \cdot \Gamma = Q$$

$$-n \cdot \Gamma = 0 \qquad -n \cdot \Gamma = 0$$

Dimensionless parameters	Layer 1	Layer 2
Fraction of thickness H	0.33	0.67
Irreducible water saturation S _{ui}	0.05	0.2
Residual oil saturation S _{or}	0.25	0.2
Relative water permeability at residual pil saturation kr _{wor}	0.8 (0.4)	0.8 (0.4)
Relative oil permeability at irreducible water saturation kr _{owi}	0.8	0.8
Dimensionless permeability in X- direction <i>K_X</i>	0.33	0.67
Dimensionless permeability in Y- direction K _Y	0.33	0.67
Dimensionless porosity Φ	1	
Viscosity ratio of water to oil $\frac{\mu_w}{\mu_o}$	1:3 (1:1.5)	
Anisotropy ratio E	1000	
Dimensionless	1	

Results-2 layers

 $M = \frac{k \tau_{owi}}{k \tau_{wor}} \frac{\mu_w}{\mu_o}$

Results- 2 layers

Comparision with analytical solution

Analytical derivation

Anisotropy parameter E

- Small E Poorly communicating layers
- Large E Well communicating layers

Asymptotic approximation – assumption for perfectly communicating layers:

Etends to infinity!

Consequence: Pressure gradient across the layers is negligebly small!

Results: log-normal distributed permeability

Results:Levels of communication between layers

Results: Involving gravity

Conclusions

- 2D simulation of waterflooding in oil recovery
- Show the effect of crossflow
- When E increases, inter-layer communication increases
- Gravity and cappilary can be added easily
- Artificial diffusion is needed