Catalytic Pellet Based
Heterocatalytic Reactor Bed Models Development

György Rádi, Tamás Varga, Tibor Chován

University of Pannonia
Department of Process Engineering
Hungary
The aim of the work

- Two-phase model development
- Micro level investigation
- Catalytic pellet model – bed model
Modelling with CFD technics

• COMSOL Multiphysics 3.5a:
 – Solve PDE with Finite element method
 – Complex modelling surface
 – User friendly implementation
 – Many fields specialised toolbox

• MATLAB:
 – Numbers of functions
 – Communication with COMSOL Multiphysics
 – High performance of visualistion tools
The studied object

- **Reaction**
 \[A + B \rightleftharpoons C \]

- **The properties of the reaction:**
 - Equilibrium reaction
 - Exothermic
 - Number of moles is changing

University of Pannonia, Department of Process Engineering, Hungary
The implementation of the models

Temperature [K]

Concentration, cA [mol/m³]

Experiment

Calculate
Motivations of this presentation

• To show the method of investigation the heterocatalytic phenomena on micro level

• To show a new modelling concept:
 – To build complex network from simple models
Results

Concentration of raw material

Concentration of product

University of Pannonia, Department of Process Engineering, Hungary
Results

Temperature

Velocity

University of Pannonia, Department of Process Engineering, Hungary
The models of catalytic bed

Examined model

Reference model
Calculation of the difference

\[
\frac{(\text{Ref.profile} - \text{Result.profile})^2}{(\text{Max.value} - \text{Min.value})^2}
\]

vectors

 scalars
Difference between the velocity profiles

University of Pannonia, Department of Process Engineering, Hungary
Difference between the concentration of raw material (A,B) profiles

University of Pannonia, Department of Process Engineering, Hungary
Difference between the concentration of the product (C) profile
Aggregated results

Particle size dependence of the aggregated relative squared difference of the reference and the built catalyst bed parameters

- cA
- cB
- cC
- v
- T_sec_axis

Aggregated relative squared difference vs. Pellet diameter (mm)
Conclusion

• Two dimensional model of a catalyst pellet with its close surroundings was implemented

• Catalytic beds was implemented pellet by pellet with the network modelling concept and the validation of results has been started

 – **Advantages:**
 • Reduced memory needs
 • You can work with a simple PC

 – **Disadvantages:**
 • Slow
 • Inaccurate
 • It works with only special models
Plans for model improvement in the future

- Automation of the bed builder
- Work with pellet structures as an element
- Expansion the domains of the parameters:
 - Pellet diameter
 - Work in 3 space-dimension
- Identification of the back-mixing effect with iterative methods

- With the advanced model:
 - Optimization of catalytic pellet:
 - geometry
 - shape
 - distribution in the catalytic bed
 - Analyze the operation of reactor
 - Sensitivity examination
Thank you for your attention!

Acknowledgements:

The financial support from the TAMOP-4.2.2-08/1/2008-0018 (Livable environment and healthier people – Bioinnovation and Green Technology research at the University of Pannonia) project is gratefully acknowledged.

C'est la fin