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Introduction

 Numerical models deliver an approximation 
uh for the ‚real‘ solution u, (only)

 The numerical solution depends on the grid 
spacing h (and eventually other numerical 
parameters, for example the timestep) 

 The 'error' can be measured as

with the norm     as a distance measure
hu u−



  

(Analytical) Solutions & Norms

In case to compute the error we need to decide 
about u and      .

 For ‚simple‘ testcases an analytical solution exists 
and can be computed easily.

 If no analytical solution is known we may take a 
high precision numerical solution as a substitute.

 Concerning the norm, the most frequent choices are
 maximum norm 
 average norm
 energy norm
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In case of convergence of the numerical solutions we have

If we assume the following approximation for the error 

we obtain the convergence rate ϑ  as a measure for the 
convergence. The higher the convergence rate, the faster the 
convergence for h→0.  

Convergence Rates
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Irregular Meshes & DOFs

 If we compute the error for two different mesh 
sizes, we can obtain the convergence rate by:

 For irregular meshes there is no single mesh 
constant h. Instead we may use the number 
of degrees of freedom (DOF) as measure of 
the mesh refinement. Then we obtain ϑ  from 

Jänicke & Kost (1999)
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Example 1:
Potential Eq. & Dirichlet Conditions

2 1u− ∇ =
2 2( , ) ( 1) / 4u x y x y= − + −

hu u−DOF ϑ

1561 0.0017 1.95  

6145 0.00044 2.00

24383 0.00011 1.98

97163 0.000028  

Bradji & Holzbecher (2007,2008)

Element 
order

Norm Conv. 
rate

1 average 2

1 energy 1

2 average 3

2 energy 2

2 maximum 3



  

Example 2:
Potential Eq. & Dirichlet Conditions

2 1u− ∇ =

Bradji & Holzbecher (2007, 2008)

DOF 1 ϑ1 2 ϑ2

520 4.1 10-4 1.81        
2017 1.2 10-4 1.97 9.4 10-6 3.00

7945 3.1 10-5 1.97 1.2 10-6 2.98

31537 8.0 10-6 2.01 1.5 10-7 3.11

1.25 
105

2.0 10-6 2.00 1.8 10-8 2.97

5 105 5.0 10-7   2.3 10-9  

( ) ( )( , ) sin sin (1 )(1 )u x y xy x y= − −

Element order Norm Conv. rate

1 average 2

1 energy 1

1 maximum 3

2 average 3

2 energy 2

2 maximum 3

hu u− hu u−

Details for average norm



  

First order elements

DOF time
         ϑ1

777 0.046-0.06 0.9784 1.97

3041 0.125 0.2557 1.90

12033 0.5-0.547 0.0692 1.69

47873 2.344 0.0214 1.37

190977 18.11 0.0083

Second order 
elements

DOF time

3041 0.141 0.0601

12033 0.515 0.0277

47873 2.563 0.0138

190977 13.95 0.0069

Example 3: Poisson Equation 
with Dirac Right Hand Side 

Bradji & Holzbecher (2008)

2 (0)u δ− ∇ =
2( , ) ln( ) / 2 ln( ) / 4u x y r rπ π= − = −

Details for average norm

hu u−

hu u−



  

Example 4: Potential Eq. with 
Dirichlet- and Neumann conditions 
 

Bradji & Holzbecher (2007)

hu u−

DOF # lin. 
elements

ϑ

527 992 0.249 0.95  

2045 3968 0.129 1.07

8057 15872 0.0614 1.05

31985 63488 0.0297 1.02

127457 253952 0.0146  

hu u−

DOF # quad. 
elem.

ϑ

2045 992 0.1366 0.96  

8045 3968 0.0702 1.08

31985 15872 0.0332 1.23

127457 63488 0.0142  

Details for average norm

∆u=0
Analytical solution from
Schwarz-Christoffel Toolbox



  

Combined 1D/2D: Set-up 1

Thin fracture in a constant flow field
Mathematical approach: Darcy‘s Law in Fracture and Matrix

Flow

Fracture



  

Differential Equations & 
Analytical Solution

Matrix (2D):

 low hydraulic conductivity

Fracture(1D): 
 

  high hydraulic conductivity

Analytical solution (complex potential):

0lowK ϕ∇ ∇ =

0highK ϕ∇ ∇ =

2 2( ) i ( cos( ) i sin( ))oz z z aα αΦ = − Φ − −

For more details see Holzbecher et al. 2010, this conference
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MATLAB Visualization

Analytical solution for real and imaginary part

Isopotential 
lines

Streamlines = 
Contours of 

Streamfunction

potential



  

2D Geometry
 total domain: diffusion equation for real potential ϕ
  boundary conditions: Dirichlet

1D Geometry (for lower dimensional 
case)
 diffusion equation for real potential ϕ
 boundary conditions: Neumann

Coupling:
 solutions identical at fracture (B1) 

Coupling is introduced using subdomain extrusion 
variable from 1D to 2D

Numerical Solution*
* for real potential part only



  

Combined 1D/2D: Set-up 2

Potential equations in 1D (B2) and 2D (R1)
Bounsary conditions: Dirichlet and Neumann

Flow

Fracture



  

Flow Pattern; Variation of Kratio

Angle: 45°
Width: 0.01 
Kratio   : 100 (top)
  and 10000 (bottom)

1D 
lower-dimensional
fracture



  

Model Runs
2nd order elem.; max-norm; set-up 1

DOF ϑ

2577 9.2220
0.5039

 

9999 6.5535
0.5090

39387 4.6231
0.5398

156339 3.1867
0.5684

622947 2.1513
0.5345

2486979 1.4861  

2nd order elem.; average-norm, set-up 1

210e ⋅DOF ϑ

2577 5.5346
1.0643

 

9999 2.6900
1.0421

39387 1.3168
1.0418

156339 0.6422 
1.0639

622947 0.3078
1.1243

2486979 0.1414  

Similarly for energy norm, second order elements and set-up 2. 
For all details see paper!

210e ⋅

he u u= −



  

Conv. Rates 2D/1D Combined Models
  1st order 

elements
2nd order 
elements

Maximum norm 0.5 0.5

Average (L2) 
norm 

1.0 1.0

Energy norm 0.5 0.5

  1st order 
elements

2nd order 
elements

Maximum norm 0.7 0.7

Average (L2) 
norm 

1.0 1.0

Energy norm 0.5 0.5

Set-up 1

Set-up 2

Convergence rates turn out to be very low and independent of element order



  

Comparison with Pure 2D

Convergence rate for set-up 1 

with full 2D approach for fracture 

  1st order 
elements

2nd order 
elements

Maximum norm 0.72 0.78

Average norm 1.78 1.73

Energy norm 1.20 0.75

Convergence rates for the pure 2D approach are in all 
cases (concerning norms and element order) higher 
than for the coupled 2D/1D approach.

However for the given set-ups the convergence rates 
for the 2D approach are much smaller than for the 
single dimensional examples, seen before.



  

Conclusions

The convergence rates for the combined 1D/2D 
model are significantly reduced in comparison to 
the pure 2D-set-up and even more when 
compared with single dimensional examples. 
Moreover there seems to be no dependence of 
the finite element order. This is a clear indication 
that the finite element discretization is not the 
crucial task of the numerical solution. The 
coupling between the 1D and 2D domains most 
likely is the limiting process in the entire model 
constellation - with the substantial negative effect 
on the convergence. 

Merci beaucoup
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