Efficiency and Stability Trade-offs in FSI Simulations of Coronary Artery Blood Flow

E.Guleryuz¹, A.Taha¹, S.Koric^{1,2}, Q.Lu¹, M.Vellakal¹

¹National Center for Supercomputing Applications ²Mechanical Science and Engineering Department, University of Illinois

COMSOL Conference 2019, October 3rd

NCSA Industry – Goal: 6 months ahead of competition

Industry Dedicated

- Technical Teams
- HPC Resources
- Business Leadership and Project Management

Tradition

• Industry as a part of NCSA's mission for > 30 years

Culture

- Work at industrial pace with NDAs
- Deliver on time and under budget

Largest Industrial HPC Program in the World

ILLINOIS NCSA

NCSA Industry – Technical Expertise

- Modeling and Simulation
- Bioinformatics and Genomics
- Big Data Analytics, GIS, and AI
- Code Profiling and Optimization
- Rapid User Support and HPC Training
- Cyber Infrastructure and Security
- Visualization
- Much more at NCSA and the University of Illinois

ILLINOIS NCSA

iForge – The HPC Environment for Industry

- Latest and best
 - Computing (Intel/Skylake 192-256 GB)
 - In-memory big data analytics (SPARK)
 - GPU driven AI technologies (V100)
- 99% uptime and live upgrades
- Development and production workhorse
- Rapid user support and advanced consulting
- Built exclusively for Industry's applications and workflows

<u>Reduced model of blood flow – Pressure impulse traveling through flexible tube</u>

Overview of key modeling considerations

Goal: Quantify computational tradeoffs in FSI simulations

Effect of FSI solution options on convergence and accuracy

Multiphysics modeling approach: Monolithic (Fully-coupled), Partitioned (Segregated)

Linear system solver: Direct (PARDISO, MUMPS), Iterative (AMG, GMG)

Optimum hybrid computing configuration (MPI ranks x OpenMP threads)?

Problem size: 400k tetrahedral elements; Hardware specifications: Intel Skylake compute nodes with 192 GB RAM

2 MPI ranks x 10 OpenMP threads per node is optimum for a combined solution time and memory footprint consideration

Performance scaling of linear system solvers (PARDISO, MUMPS, AMG)

Direct solvers: Memory footprint prohibitive for large problems, steep performance degradation when out-of-core

Iterative solvers: Not suitable for problems with high condition number and strong coupling effects

ILLINOIS NCSA 9

Monolithic vs. Segregated approach – scaling of solution time

Monolithic vs. Segregated approach – scaling of memory footprint

Effect of problem size on performance scaling

Monolithic + PARDISO: Most scalable in terms of solution time

Segregated + AMG: Lowest memory footprint

Concluding remarks

Grouping of highly coupled variables is needed for the segregated approach

- GMG solver failed to converge
- □ Memory footprint is critical for the performance of direct solvers
- □ PARDISO is the most scalable solver in terms of solution time
- □ More scale helps with more physics
- Computational efficiency is critical in high throughput parameter sweeps
- □ Simulation challenges are beyond the capabilities of today's S/W and H/W

Contact info

Erman Guleryuz, Ph.D. Research Scientist, NCSA guleryuz@illinois.edu +1 217-300-0249 http://www.ncsa.illinois.edu/industry

IILLINOIS

NCSA | National Center for Supercomputing Applications