

COMSOL CONFERENCE 2019 BOSTON

Silicon Photonic 2 X 2 Power Splitter with S-Bend Configuration

Erica C. Graham¹^{*}, Nicholas M. Fahrenkopf ² Nathaniel C. Cady²

¹Colleges of Nanoscale Science and Engineering, University at Albany (SUNY), Albany, NY, USA ²Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA *Egraham@albany.edu

Introduction

- What is Si Photonics
- Si Photonic Components
- Power Splitters

Simulation Set-Up

Results

- □Variation of coupling length
- Variation of coupling gap
- Lumerical Mode Solutions comparison

Summary/ Future Works

Outline

Introduction

Link Bandwidth

3.

Si Photonic Components

High refractive index contrast

Photonic Link

* @1550 nm wavelength

October 3rd, 2019

Design Parameters:

Coupling Gap (gc): separation distance between waveguides
 Coupling Length (lc): length of the parallel coupling region
 S-bends: compact footprint and controlling coupling region

Cross-section view

Top-down view

Modeling of Power Splitter

Objective

- Validate COMSOL's ability to reproduce results from Lumerical Mode[®], a popular optical modeling software
- Parametric sweep of lc and gc
- Compare power splitting ratio

UNIVERSITY AT ALBANY Model Set-Up: Boundary Conditions

Model Set-Up: Meshing

Max mesh element size must be a fraction of a wavelength Max: 0.4 um

E-field Coupling Gap (gc)

Normalized E-field profiles @1550 nm:

Parametric sweep from 0.1 um to 0.4 um

gc: 0.4 um

gc: 0.2 um

0.9 0.8 0.7 0.3 0.2 0.1 μ m 0 10 35 15 20 25 30 gc: 0.1 um

9.

0.6

0.5

0.4

UNIVERSITYAT ALBANY Power Splitting Separation Gap (gc)

October 3rd, 2019

COMSOL & Lumerical Comparison

* 1550 nm wavelength

E-field Coupling Length (lc)

Normalized E-field profiles @1550 nm:
 Parametric sweep from 0 um to 30 um

lc: 0 um

Ic: 20 um

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

UNIVERSITY AT ALBANY Power Splitting Coupling Length (Ic)

COMSOL & Lumerical Comparison

Coupling Length (um)	COMSOL Multiphysics®	Lumerical Mode Solutions®
Through Port		
0	0.995	0.993
10	0.897	0.903
20	0.734	0.718
30	0.538	0.482
Cross Port		
0	0.004	0.005
10	0.102	0.096
20	0.266	0.280
30	0.461	0.514

* 1550 nm wavelength

Simulations show results from COMSOL and Lumerical are in good agreement

Characterize stress induced fabrication shifts

Couple Structural Mechanics Module
Solid Mechanics Interface

Fabrication using 300mm wafer processing facility

- [1] Z. Lu et al., "Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control," (eng), Optics express, vol. 23, no. 3, pp. 3795–3806, 2015.
- [2] R. K. Gupta, S. Chandran, and B. K. Das, "Wavelength-Independent Directional Couplers for Integrated Silicon Photonics," J. Lightwave Technol., vol. 35, no. 22, pp. 4916–4923, 2017.
- [3] G. F. R. Chen et al., "Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections," (eng), Scientific reports, vol. 7, no. 1, p. 7246, 2017.
- [4] COMSOL Multiphysics, "The Wave Optics User's Guide", 2019
- [5] Lumerical Solutions," Stress and Strain", 2019.

Nicholas Fahenkopf, Ph.D. (Co-Advisor)
 Nathaniel Cady, Ph.D. (Co-Advisor)
 Douglas Coolbaugh, Ph.D.
 Eng Wen Ong, Ph.D.
 COMSOL Technical Support

Thank You

Egraham@albany.edu

For more information, visit our poster!