

Simulation of Organic Thin Film Transistors for Gas Sensing Application

Wudyalew Wondmagegn

Yingli Chu^b, Hui Li^b, Howard E. Katz^b, Jia Huang^c

^aElectrical and Computer Engineering Department, The College of New Jersey, Ewing NJ 08628, USA *Phone: (609)771-2772, E-mail: <u>wondmagw@tcnj.edu</u>*

^bDepartment of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, United States

^cSchool of Materials Science and Engineering, Tongji University, Shanghai, 201804, P.R. China

Content

- Device Simulation Approaches and Models
 - Uniform distribution of traps
 - Multigrain structure

Results

- ➤ TFT simulation
- Analyte sensing

□ Conclusion

Device Simulation

Fig.1 (a) Uniform distribution of traps and defects, (b) Channel divided in to multiple grains, (c) COMSOL Mesh structure

Table 1 Summary of material parameters used in both simulation approaches

	PQT12	PQTS12
Band gap	2 eV	1.8eV
Affinity	3.1 eV	3.2 eV
Permittivity	3	3
Trap density	7.1x10 ¹⁵ cm ⁻³	1.2x10 ¹⁶ cm ⁻³
Polymer thickness	100 nm	100 nm
Oxide thickness and permittivity	300 nm, 3	300 nm, 3
S,D Gold thickness and wf	50 nm, 5.1 eV	50 nm, 5.1 eV
Gate, n-poly-Si thickness and wf	50 nm, 4.15 eV	50 nm, 4.15 eV
Channel length	2 mm	2 mm
Channel width	11 mm	11 mm
Interface charge	1.2x10 ¹¹ cm ⁻²	2x10 ¹⁰ cm ⁻²

Fig.2 Chemical structure and absorption spectrum

Exponential Trap distribution

$$g_{TA}(E) = n_{TA} \exp\left[\frac{E - E_C}{w_{TA}}\right]$$
$$g_{TD}(E) = n_{TD} \exp\left[\frac{E_V - E}{w_{TD}}\right]$$

Gaussian Trap distribution

$$g_{GA}(E) = n_{GA} \exp\left[-\left(\frac{E_{GA} - E}{w_{GA}}\right)^2\right]$$

$$g_{GD}(E) = n_{GD} \exp\left[-\left(\frac{E - E_{GD}}{w_{GD}}\right)^2\right]$$

Computational Methods:

COMSOL **Semiconductor Module** is used to solve Poisson and Continuity equations:

$$-\nabla \cdot (\varepsilon \nabla V) = q(p - n + N_D^+ - N_A^-)$$
$$\frac{\partial n}{\partial t} = -\frac{1}{q}J_n - U_n$$
$$\frac{\partial p}{\partial t} = -\frac{1}{q}J_p - U_p$$

Results

(A) Device simulation

Fig. 3. (a) Id – Vd curves for different gate voltage (b) Id – Vg curves

Fig. 4. (a) Id – Vd curves for different gate voltage (b) Id – Vg curves

(B) Analyte Sensitivity simulation

PQT12 OTFT

Table 2 Effect of doping on drain current and mobility

Change in doping	Change in drain current	Change in mobility	Comparison with Expt.
0	0	0	No exposure
300%	14.67%	0.27%	5 min exposure at 1ppm (14.0%±2.1%)
680%	31.95%	0.61%	10 min exposure at 1ppm (31.6%±1.6%)

Fig.5 Id – Vg curves for different doping conc.

PQTS12 OTFT

Table 3 Effect of doping on drain current and mobility

Change in doping	Change in drain current	Change in mobility	Comparison with Expt.
0	0	0	No exposure
143%	42.7%	1.39%	5 min exposure at 1 ppm (42.7%±4.8%)
333%	100.4%	3.26%	10 min exposure at 1 ppm (100.4%±5.2%)

Fig.6 Id – Vg curves for different doping conc.

Conclusion

- Semiconductor Module used to study gas sensing by OTFT
- Interface and bulk traps models used with Gaussian and exponential distribution
- Simulation issues convergence