

Engineering Through The Fundamentals

Simulation of a Permeability Probe to Estimate Hot Corrosion Zone Size

COMSOL Conference, Boston, 2019

Zhong Ouyang, Wen Li, Alireza Kermani, Nagi Elabbasi, William Brindley, Andrew DeBiccari

contact@veryst.com www.veryst.com

Introduction

- Sulfidation corrosion of Nickel based super-alloys components is one form of corrosion that affects performance
- This corrosion results in the formation of a hot corrosion zone with a high relative permeability
- Hot corrosion zones can be detected by a permeability probe, Magnetoscop 1.070, in this work, and used to determine whether a component should be removed from service
- Measurements from the probe do not provide details on the hot corrosion zone area or depth

Magnetoscop 1.070

- The Magnetoscop 1.070, made by FOERSTER, is a portable magnetometer system that measures relative permeability
- An addition of a material with a relative permeability greater than 1 will affect the magnetic field, and change its horizontal component at the measurement locations
- The probe is therefore an effective, non-destructive testing tool for detection of hot corrosion zones

KK&S Instruments. (2016). *The Probe* [Brochure]. Retrieved from <u>http://www.kks.com.au/24-2016-october-december-probe/</u>

9/27/2019

Magnetoscop 1.070 Operation

- The Magnetoscop 1.070 probe, circled in red below, works by contacting its tip with the surface of a component or cylindrical calibration block (ideally perpendicular to the surface)
- The probe outputs the magnetic flux density, or effective relative permeability, of an object that generates magnetic flux
- The output reading is displayed in the attached instrument shown to the right
- This probe is suitable for relative permeability values in the range of 1.00 to 2.00

Foerster. (n.d.). *Magnetoscop 1.070: Product Information*. Retrieved from <u>https://www.fluxgate-magnetometer.com/assets/foerster/media/Downloads/Magnetoscop%201.070/1070_PI_EN_MA_GNETOSCOP.pdf</u>

Magnetoscop 1.070

- This permeability probe has a cylindrical magnetic core to generate magnetic fields
- There is a layer of ceramic at the tip of the probe so it never directly touches the surface
- The precise method used by the probe to calculate the relative permeability is not available

Model Setup

9/27/2019	This document has been publicly released	6

Geometry

- We used a 2D axisymmetric model when the probe remained at the cylindrical axis of the calibration block and moved only in the vertical direction
- We used a 3D model when the calibration block moved perpendicular to the cylindrical axis and modeled only half of the set up due to symmetry

2D Model

Materials

- All objects aside from the calibration block, or hot corrosion zone, have a relative permeability of 1, shown in blue on the figure to the right
- The calibration block, or if applicable, the hot corrosion zone, has a relative permeability > 1, shown in grey

2D Model for Calibration

Physics Setup

- The validation model included the central magnet, the calibration block of high permeability, and the surrounding air
- We assumed a magnetostatic problem with no electric field or high frequency effects on the probe or its surroundings
- Magnetic core was prescribed with a magnetic field strength
- Red circles show the horizontal magnetic flux density measurement points
 - Location of these two points were validated from model calibration

Magnetic flux density

Model Calibration

9/27/2019	This document has been publicly released	10

Model Calibration

- Experimental data of probe reading for calibration blocks were gathered for comparison with simulation
- Calibration was performed to verify that measurement procedure is accurate
- A table that relates the relative permeability (probe reading) and the horizontal component of the magnetic flux density recorded at the measurement point(s) was developed and verified from the simulations
 - Measurement point remained at middle of probe vertically
 - Point's radial distance from magnetic core was based on measurement from an X-ray image
 - This location was verified by comparing the simulated and experimental data

Simulation #1

- Used the 2D model to derive a conversion table from magnetic field to permeability
- Gap refers to the distance between the ceramic layer of the probe and the calibration block
- Three studies using the model were performed
 - For study 1, the gap was kept at zero while the relative permeability of the block increased
 - For study 2, we kept the relative permeability of the block at µ₁ while the gap increased
 - For study 3, we kept the relative permeability of the block at μ₂ (μ_{2 >} μ₁) while the gap increased
- Experimental tests identical to studies 2 and 3 were performed for comparison

Results

- We interpolated the magnetic flux density from study 2 with the flux density from study 1 to get the corresponding theoretical relative permeability (left)
- This was repeated for the magnetic flux density recorded from study 3 (right)
- Radial distance of measurement point was adjusted until the simulated and experimental data matched as seen below

Simulation #2

- To check the probe calibration based on Simulation #1, additional experiments where the probed was moved parallel to the calibration block and the effective permeability measured were performed
- The same test using the 3D finite element model shown on the right was simulated
 - The horizontal magnetic flux density as the block moved parallel to the probe was recorded
- Offset refers to the distance between the center of the probe and the cylindrical axis

GO BEYOND

Simulation Simulation **Relative Permeability Relative Permeability** Experiment Experiment Offset Offset Calibration Block: μ_2 Calibration Block: μ_1

This document has been publicly released

ervst

Model Improvements

Mesh Convergence Study

 Percent error calculated as the difference between the predicted horizontal component of the magnetic field and its exact value, divided by the exact value, multiplied by 100

Adaptive Mesh Refinement

- Used COMSOL's adaptive mesh refinement to get more accurate results with less meshing effort
- Start with a very coarse mesh and let COMSOL do the refinement!
- The figure below shows that in general, for the same total number of elements, the error was lower for the adaptive meshing compared to the manual meshing

Probe Reading of Idealized Component

9/27/2019

Blade Geometry

- Developed computational models used to predict reading of Magnetoscop 1.070 when there are hot corrosion zones within a section of a component
- The figure below shows a cross section of an idealized geometry double walled component

Variables	Description
н	Thickness of component wall
А	Distance between component walls
D	Diameter of hot corrosion zone
Dd	Depth of hot corrosion zone

Idealized Double Wall Component

Model Assumptions

- Hot corrosion zones are cylindrical in shape
- Hot corrosion zones are present on both inner walls
- The probe is always touching the outer wall surface
- Hot corrosion zones have a constant known permeability value

Component wall

Simulation

- We defined the H (wall thickness) and A (gap between walls) based on the dimensions at specific component locations
- Simulations ran with hot corrosion zones for all combinations of a range of diameters and depths
- For each case, the horizontal magnetic flux density evaluated at the measurement point was converted to a relative permeability, as detected by the probe, using the verified calibration table
- We determined the combinations of the minimum/maximum detectable diameters and depths of hot corrosion zones that output probe readings
 - Were able to relate the recorded probe reading to the min/max dimensions of a hot corrosion zone

Results Comparison

- This figure shows a plot of permeability results from simulation and measurements on actual component
- Excellent agreement between modeling and measurements

Summary and Findings

Summary

- Magnetic permeability probes can detect hot corrosion zones caused by sulfidation corrosion in nickel super-alloy components
- Computational models that predict the magnetic permeability measured by the Magnetoscop 1.070 probe were developed
- Models validated with experimental data
- Models used to predict reading on Pratt & Whitney components to determine the minimum dimensions of the hot corrosion zone for detection by the probe