Hydrodynamic heat transport model for semiconductors with complex geometries including interfaces

A. Beardo, F. X. Alvarez, D. Jou, J. Bafaluy, J. Camacho, Ll. Sendra albert.beardo@uab.cat

Collaborators and Financial Support

PHYSICS DEPT: F. Xavier Alvarez Albert Beardo Lluc Sendra Javier Bafaluy David Jou Juan Camacho Pol Torres

ELCTR. ENG. DEPT Xavier Cartoixà

> MATH DEPT: Marc Calvo Tim Mayers Mark Hernessy

PURUE UNIVERSITY Ali Shakouri Sami Alajlouni

BOULDER UNIVERSITY Josh Knobloch Begoña Abad Travis Frazer

Motivation

- Kinetic Collective Model
- Hydrodynamic effects in heat transport
- Experimental Validation
- Conclusions

Motivation

Siemens, M. E. <i>et al.</i> Nat. Mater. 9, 26–30 (2010) Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent	Wilson, R. B. and Cahill, D. G. <i>Nat. Commun.</i> 5 , 5075 (2014) <i>Anisotropic failure of Fourier theory in time-domain</i> <i>thermoreflectance experiments</i>
Hoogeboom-Pot, K. M. <i>et al.</i> <i>PNAS</i> 112 , 201503449 (2015). A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency	Johnson, J. A. <i>et al.</i> <i>Phys. Rev. Lett.</i> 110 , 025901 (2013). Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane.
The spectra sp	

Several recent experiments have shown the Fourier law is not valid at short length and time scales

AB

Universitat Autònoma de Barcelona

U

Cambridge – September 25th 2019

Hydrodynamic effects I: Viscosity

Applicability of hydrodynamic ab initio model

Curved heat flow in MC, MD and FE

Hydrodynamic effects II. Vorticity

Universitat Autònoma de Barcelona

Cambridge – September 25th 2019

Thermal Boundary Resistance

UAB Universitat Autònoma de Barcelona

Cambridge – September 25th 2019

EUV metrology

Frequency Domain Thermoreflectance (FDTR)

AB

- Phonon hydrodynamics is a generalization of Fourier with improved predictability at the nanoscale
- Phonon vorticity and viscosity appear as a phenomenological explanations for the thermal behavior of nanoscale samples allowing to explain the new experiments
- In some experiments hydrodynamics can be observed as an increase of a the Thermal boundary resistance when analyzed with a Fourier model
- The simplicity of the equations allows an easy implementation in COMSOL

Collaborators and Financial Support

Universitat Autònoma de Barcelona PHYSICS DEPT: F. Xavier Alvarez Albert Beardo Lluc Sendra Javier Bafaluy David Jou Juan Camacho Pol Torres

ELCTR. ENG. DEPT Xavier Cartoixà

MATH DEPT: Marc Calvo Tim Mayers Mark Hernessy

PURUE UNIVERSITY Ali Shakouri Sami Alajlouni

BOULDER UNIVERSITY Josh Knobloch Begoña Abad Travis Frazer

Thanks for your attention!

