

A Simulation App to Calculate Stiffness of Stabilizer Bar

COMSOL CONFERENCE 2019 BANGALORE

Deshmukh Chandrakant Shah Sandeep Saifee Aliakbar Srikant Vangla

Methods Development Group Mahindra & Mahindra Ltd Mahindra Research Valley, Chennai

29th November 2019

SCORPIO

(B)

180

Mahindra sosori ARAN

11

HIT

Introduction

 Anti-Roll Bars are the part of suspension system, its purpose is to resist the body roll during the cornering of the vehicle and prevent vehicle from waddling due to road surface providing ride comfort to passenger

 To achieve the required roll gradient, we have to target roll stiffness which in turn decides the Stabilizer bar stiffness

Simulation Objective

- The objective of this application is to compute the stiffness of Stabilizer Bars under different load cases with and without bushing
- To reduce the iterations in the FEM to achieve target metrics during the design at concept stage
- To design the geometrical aspect of bar with determining number of bends using parametric study during packaging
- Build a Comsol application in Mathapps web based platform using Comsol server and custom developed methods

Modelling in Comsol

 The Anti-Roll bar is modelled in Comsol as beam with 6 combination of cases with loading at the ends, bushing/ bearing at the mid-way

The roll gradient is formulated as:

R.G.(deg/g) =
$$\frac{Mr}{Kr}$$
; Mr = Roll Moment; Kr = Roll Stiffness
Mr = Fz*L;

• The calculated Roll gradient which is the target will be then used for further analysis

Modelling in Comsol

 Parametrization of Geometry No of Bends:

arametrization Loa	ad cases an	d Bushing p	properties		
elect the number o	of Bends:		2 1	Bends	,
Note:	2 Be	2 Bends			
 Solution time 	scales with	number of	benc ⁴ Be	ends ends ends	
Note: All dimen	sions and	coordinate	s are in n	ends	_
	Х	Υ	Z	Fillet	
Point 1 (Eye LH):	-570.2	249.7	83.4		
Point 2:	-567	215	80	30	
Point 3:	-457	80	74	50	
	-420	0	0		

The application requires the co-ordinates of the two eye point of the ARB along with the Bends

Load Cases and Bushing

Select Li Applied Bushi orm X Coord Width o	oad Cases Load: ing propertie Sinate of LH	Load Cas 1000 N Bushing	e 1: Applied	load with	bushing		à.
Applied Bushi X Coord Width o	Load: ing propertie finate of LH	1000 N R Bushing:	(910		L.
Bushi X Coord Width o	ing propertie Sinate of LH	n Bushing					
X Coord Width o	Sinate of LH	Bushing					
Width o					-315	mm	
	f LH Bushine	a			30	mm	
X Coord	Sinate of RH	Bushing			315	mm	
Width of RH Bushing:					30	mm	
Trans	lational Bush	hing Stiffner	5	Ret	ational Bushi	ng Stiffness	
	LH Side	RH Side			LH Side	RH Side	
Kax	3187	0	N/mm	κø	0	0	N-m/rad
Ker	3187	3187	N/mm	$\kappa_{\vec{\mu}}$	0	0	Norm/rad
K 22	2278.96	4095.05	N/mm	κ_{y}	0	0	N-mi/tad
Note							
are rota	itions about	the X, V and	Z axis, respe	sctively.	RH: -ve L	oad, -ve S	

Several Load Cases and Bushings properties are defined to set boundary condition

Load Cases and Bushing

2. Displacement at both the ends and bushing applied

3. Load applied at one end, one end fixed and bushing applied

4. Load applied at both the end without bushing

5. Displacement applied at both the ends without bushing

6. Load applied at one end, one end fixed and without bushing

Application GUI in Comsol server

COMSOL CONFERENCE 2019 BANGALORE

Application GUI in Comsol server

Advanced Search		Show All Applicatio	has -		Search All Applications Bearch
	R)			TESTIMONIALS	
Aerodynamic Forces and Moments	•	Braking Performance-Brake			Methods applications heats us to predict the braking performance at very early stages in design thereby saving time by more than a week. Moreover, the applications developed are easier to use and we expect to develop more analytical tools like this for adding our design processes in future - babasaheb Shinde (brakes)
Braking Performance- Braking Efficiency	0	🗟 Data Resampling	Ca-	o	
BUSINEBS UNIT		APPLICATION GROU	P		APPLICATION NAME - [9]
ADPD	5 I I	Body Systems			APPLICATION NAME - [3]
FDPD		Brakes			Body System Weight Distribution
ртр		CAE-Crash		-1	E
Common Utility Applications	3 62	CAE-Durability			Bowden Cable Load Efficiency
Construction Equipment	1 1	CAE-Dynamics			
Powerol	1 1	CAE-PTD			Crush Space Calculator
1 March 2010 March 2010 March 2010	n	INFR.			

Results

After computation the below results values can be analysed

- Displacement at eye of the Stabilizer Bar
- Stiffness of the Stabilizer Bar

The results form this application give about 95% of correlation along with the success in mesh sensitivity analysis with the FEA

Web Based Mathapps GUI

Deployment of the application on our web based portal across our organization "Mathapps"

Summary

- COMSOL App builder can be used to prepare the customize applications (GUI) based on user requirement
- The Roll stiffness of the vehicle Stabilizer Bar can be evaluated and compared with the target without relying fully to FEA simulation
- The designer can quickly evaluate the stiffness of stabilizer bars just by entering the coordinates, bushing locations, bushing stiffness, stabilizer diameter and thickness, material properties and choose from a pre-defined load cases which is beneficial in decisions related to packaging
- The web based portal deployment via COMSOL server gives access to any of the user across different locations in the organisation

Acknowledgements

- Dr. Akella Sarma SR, Head CAE, Mahindra Research Valley, Chennai
- David Neighuk, Former Employee, Mahindra & Mahindra Ltd.
- Nayak Bhargav, Sr Lead Engineer, Mahindra & Mahindra Ltd.

Thank you

Disclaimer

Mahindra & Mahindra herein referred to as M&M, and its subsidiary companies provide a wide array of presentations and reports, with the contributions of various professionals. These presentations and reports are for informational purposes and private circulation only and do not constitute an offer to buy or sell any securities mentioned therein. They do not purport to be a complete description of the markets conditions or developments referred to in the material. While utmost care has been taken in preparing the above, we claim no responsibility for their accuracy. We shall not be liable for any direct or indirect losses arising from the use thereof and the viewers are requested to use the information contained herein at their own risk. These presentations and reports should not be reproduced, re-circulated, published in any media, website or otherwise, in any form or manner, in part or as a whole, without the express consent in writing of M&M or its subsidiaries. Any unauthorized use, disclosure or public dissemination of information contained herein is prohibited. Unless specifically noted, M&M or any of its subsidiary companies is not responsible for the content of these presentations and/or the opinions of the presenters. Individual situations and local practices and standards may vary, so viewers and others utilizing information contained within a presentation are free to adopt differing standards and approaches as they see fit. You may not repackage or sell the presentation. Products and names mentioned in materials or presentations are the property of their respective owners and the mention of them does not constitute an endorsement by M&M or its subsidiary companies. Information contained in a presentation hosted or promoted by M&M is provided "as is" without warranty of any kind, either expressed or implied, including any warranty of merchantability or fitness for a particular purpose. M&M or its subsidiary companies assume no liability or responsibility for the contents of a presentation or the opinions expressed by the presenters. All expressions of opinion are subject to change without notice.

