Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Multiphysics Simulation of Thermoelectric Systems - Modeling of Peltier-Cooling and Thermoelectric Generation

M. Jaegle
Fraunhofer-Institute for Physical Measurement-Techniques (IPM), Freiburg, Germany

Electro-thermal interaction is commonly considered only as a matter of joule heating. In addition, the Seebeck-, Peltier- and Thompson-Effects are significant in materials with high thermoelectric figure of merit Z. These thermoelectric materials have a high Seebeck-coefficient α, a good electric conductivity σ, and a poor thermal conductivity λ. They have widespread areas of ...

Modeling Polybenzimidazole/Phosphoric Acid Membrane Behaviour in a HTPEM Fuel Cell

C. Siegel[1,2], G. Bandlamudi[1,2], and A. Heinzel[1,2]
[1]Zentrum für BrennstoffzellenTechnik (ZBT) gGmbH, Duisburg, Germany
[2]Institut für Energie- und Umweltverfahrenstechnik, University of Duisburg-Essen, Duisburg, Germany

Phosphoric acid doped polybenzimidazole (PBI) membranes are commonly used in today’s high-temperature polymer-electrolyte-membrane (HTPEM) fuel cell technology. COMSOL Multiphysics is used to model and simulate the three-dimensional, single-phase, non-isothermal overall cell behaviour at different operating points. The sol-gel PBI/H3PO4 membrane behaviour is modeled using an Arrhenius ...

Heat and Mass Transfer in Convective Drying Processes

C. Gavrila[1], A. Ghiaus[1], and I. Gruia[2]
[1]Technical University of Civil Engineering Bucharest, Faculty of Building Services, Bucharest, Romania
[2]University of Bucharest, Faculty of Physics, Bucharest, Romania

A dynamic mathematical model, based on physical and transport properties and mass and energy balances, was developed for the simulation of unsteady convective drying of agricultural products (fruits and vegetables) in static bed conditions. The model utilizes water sorption isotherm equations and the change in solid density due to the shrinkage phenomenon. The aim of this article is to describe ...

Calculation of Cable Parameters for Different Cable Shapes 

H. Lorenzen[1], J. Timmerberg[1], and S. Mylvaganam[2]
[1]Department of Electrical Engineering, UAS OOW, Wilhelmshaven, Germany
[2]Department Technology/Engineering, Telemark University College, Porsgrunn, Norway

Efforts involving simulation of  transmission line networks necessitate the accurate values of the parameters of the lines. In this paper, as an attempt in estimating such parameters, the parameters of high voltage asymmetric power lines are calculated. In the process of estimation, the three phase equivalent circuit model is used. The resistance and inductance of such lines are dependent ...

A Dynamic Electrowetting Simulation using the Level-Set Method

B. Cahill[1], A. Giannitsis[1], G. Gastrock[1], M. Min[1,2], and D. Beckmann[1]
[1]Institut für Bioprozess- und Analysenmesstechnik e.V., Heiligenstadt, Germany
[2] Department of Electronics, Tallinn University of Technology, Tallinn, Estonia

Electrowetting occurs with the electrical control of the surface wetting properties through the application of an electric potential. A simulation of electrowetting driven droplet dynamics is performed using the COMSOL Multiphysics level-set method for a sessile droplet and for a droplet in a microchannel. The response of the drop to a step voltage is studied. The contact angle at one edge of ...

Numerical Simulation of Si Nanosecond Laser Annealing by COMSOL Multiphysics

M. Darif, and N. Semmar
GREMI-UMR6606, CNRS-Universite d’Orleans, Orléans, France

A 2D transient heat conduction model was created in COMSOL Multiphysics to simulate temperature changes in material irradiated by a KrF laser beam confined on silicon’s surface. In this paper, the obtained results are shown and discussed in case of bulk Silicon. The heat source is distributed in time with ‘gate’ and ‘gaussian’ shapes. The thermal properties values ...

Comparing Equations for Two-Phase Fluid Flow in Porous Media

T. Bjornara, and E. Aker
NGI, Oslo, Norway

Various types of equation system formulations for modeling two-phase flow in porous media using the finite element method have been investigated. These allow for equation manipulation such that the main differences between the formulations are the dependent variables that are solved for. Here we have tested five different formulations for 2D simulations and one for 1D; the Buckley-Leverett ...

Prediction and Optimization of Surface-Enhanced Raman Scattering Geometries using COMSOL Multiphysics

I. Knorr, K. Christou, J. Meinertz, A. Selle, J. Ihlemann, and G. Marowsky
Laser-Laboratorium Göttingen e.V., Germany

Raman spectroscopy is a commonly used tool in biodiagnostics and sensor technology. Surface-enhanced Raman scattering provides high signal enhancements especially at nanostructured metallic surfaces. In this paper the electromagnetic Raman enhancement from different metallic nanostructures - including gold coated gratings, spherical and hemispherical particles - is calculated by using the finite ...

Modeling the Thermally Induced Curvature of Multilayer Coatings with COMSOL MultiphysicsTM

H. Conrad[1], T. Klose[2], T. Sandner[2], D. Jung[1], H. Schenk[2], and H. Lakner[1,2]
[1]Semiconductor and Microsystems Technology Laboratory, Technische Universität Dresden, Germany
[2]Fraunhofer Institute for Photonic Microsystems Dresden, Germany

Within this paper the so called “birth and death” method is demonstrated in use with COMSOL Multiphysics®. With this method the free and reactionless movement of a solid structure on deformed geometries and the activation of this solid structure at later simulation steps is possible. For demonstrating the benefit, this method was applied to simulate the thermal induced ...

Accuracy Tests for COMSOL - and Delaunay Meshes

E. Holzbecher, and Hang Si
Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, Germany

In the paper we examine the accuracy of various meshes for different model regions and simple differential equations in 2D and in 3D. We study the potential equation for a single irregular domain (2D testcase 1), for a simple domain with irregular sub-domains (2D testcase 2) and a 3D testcase. For testcase 1 we compare with the analytical solution, for testcases 2 with the best solution, ...

First
Previous
1–10 of 154