Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Classical Models of the Interface Between an Electrode and an Electrolyte

E. Gongadze[1], S. Petersen[1], U. Beck[2], and U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Electronic Appliances and Circuits, University of Rostock,
Rostock, Germany

The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface electrode in the 3D Electrostatics application mode of COMSOL Multiphysics® 3.5a. The values of the electric ...

Modeling of Viscous Fingering

E. Holzbecher[1]

[1]Georg-August University, Göttingen, Germany

Viscous fingering is a topic of interest since the beginning of computational fluid dynamics. Here we focus on the classical constellation of miscible displacement, as it has been investigated in Hele-Shaw cells. A temperature or salinity front is entering with a fluid that has a different viscosity. The pure 1D flow is destabilized by the Saffman-Taylor instability. Using COMSOL Multiphysics® ...

Modelling of Heat and Mass Transfer in Food Products

[1]M.B. Andreasen

[1]Danish Technological Institute, Aarhus C, Denmark

The use of the finite element method for understanding and analyzing the freezing and drying processes of food products is in focus in this paper. The objective of this study is to develop a model that can predict temperature distribution and weight loss of food products during the freezing and drying processes. The problem was solved by utilizing heat, mass transfer and moving mesh model. In ...

Failure Modes of Underground MV Cables: Electrical and Thermal Modelling

P.A. Wallace[1], M. Alsharif[1], D.M. Hepburn[1], and C. Zhou[1]
[1]Department of Energy Systems Engineering, Glasgow Caledonian University, Glasgow, United Kingdom

Two simulations of the performance of a Paper Insulated Lead Covered (PILC) Medium Voltage (MV) underground cable are presented. The first presents the thermal response of a cable, over seven days, to a realistic load with a diurnal variation. The second concentrates on the variation of the electric field stress within the cable over a single AC cycle. The effects of a void defect within the ...

Accuracy of Fully Coupled Loudspeaker Simulation Using COMSOL

M. Hedges[1][2] and Y.W. Lam[1]
[1]Acoustics Research Centre, School of Computing, Science & Engineering, University of Salford, Salford, United Kingdom
[2]Monitor Audio Ltd., Rayleigh, Essex, United Kingdom

Loudspeaker simulation is used to inform the designer as to the performance of a design. In recent years the Finite Element Method (FEM) has been used to model the mechanical and acoustical attributes of a loudspeaker with varying success. This paper shows how a model that incorporates the magnetic, electromagnetic, mechanical and acoustical domains performs. These domains will be coupled where ...

A Study of Optical Sensor Based on Fiber Bragg Grating Using COMSOL Multiphysics®

C. Gavrila[1] and I. Lancranjan[2]

[1]Technical University of Civil Engineering Bucharest, Bucharest, Romania
[2]Advanced Study Centre, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, Romania

Fiber optic sensors can measure a large range of physical, chemical and environmental variables such as temperature, pressure, shape, position, chemical concentration, moisture, etc. Fiber optic sensors provide measurements in applications where the conventional electrical based sensors cannot be used, due to measurement requirements such as extreme temperature, small size, high sensor count, or ...

Multibody Contact Analysis of an Rzeppa CV-Joint

L. Armellin[1], F. Gatelli[1], and G. Tanghetti[1]

[1]R&D Department, Metelli S.p.A., Cologne, BS, Italy

Ball joints are widely used in many applications. This paper describes the contact and kinematic analysis of an Rzeppa type constant-velocity joint (CV-joint). Starting from a conveniently simplified 3D model, at fixed joint angle of 45°, a CV-joint made of all “generic steel” components has been studied. Considering only a “perfect” geometry (i.e. not affected by ...

FSI Analysis of Microcantilevers Vibrating in Fluid Environment

A. Ricci[1] and E. Giuri[1]

[1]Materials and Microsystems Laboratory (CHI-Lab), Politecnico di Torino, Torino, Italy

Cantilever vibration in fluid environment is probably one of the most common Fluid Structure Interaction problems in the field of Micro/Nano Electro Mechanical Systems. Usually the effect of fluid on cantilever oscillation is characterized in terms of mode resonance frequencies and quality factors (Qs). In this work a new approach to the above FSI problem is proposed: modes Q factors and ...

Static and Dynamic Simulation of an Electromagnetic Valve Actuator Using COMSOL Multiphysics®

R. Wislati[1] and H. Haase[1]
[1]Institut für Grundlagen der Elektrotechnik und Messtechnik, Leibniz Universität Hannover, Hannover, Germany

In this paper an Electromagnetic Solenoid Actuator (EMVA) consisting of an upper and lower electromagnet, a linear moving armature and two preloaded springs is considered as a potential approach in Variable Valve Actuation (VVA) systems for internal combustion engines. The analysis of the upper electromagnet has been performed using Finite Element Method (FEM) simulation. Thereby an axially ...

Measuring and Calculation of Positive Corona Currents Using COMSOL Multiphysics®

M. Quast[1] and N.R. Lalic[1]
[1]Gunytronic GmbH, St Valentin, Germany

The sensor type developed by Gunytronic uses corona discharge for measuring flow rates in exhaust streams of automotives, aircrafts and industrial plants. This paper will present the development of testing equipment used in laboratory for investigating physical relations on corona currents, charged particle transport, the calculation of the collateral electric fields and high potentials. This ...

1–10 of 209