See How Multiphysics Simulation Is Used in Research and Development

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.
View the COMSOL Conference 2018 Collection
2010 - Bostonx

A Study of Seismic Robot Actuation Using COMSOL Multiphysics

S.L. Firebaugh, E.A. Leckie, J.A. Piepmeier, and J.A. Burkhardt
United States Naval Academy, Annapolis, Maryland, USA

Microrobotics has promising applications in microsurgery and microassembly. A challenge in these systems is interfacing with the robot. This project explores crawling robots that are powered and controlled through a global mechanical vibration field. By controlling the frequencies ... Saiba Mais

Finite Element Analysis Approach for Optimization of Enzyme Activity for Enzymatic Bio-fuel Cell

Y. Song, and C. Wang
Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are miniature, implantable power sources, which use enzymes as catalysts to perform redox reaction with biological fuels such as glucose. In this study using COMSOL Multiphysics, we use an EBFC chip, having three dimensional, highly dense micro-electrode ... Saiba Mais

Mixers and Pumps for Microfluidic Systems, based on Conducting Polymer Oxidation Wave

K. Kannappan, G. Bogle, J. Travas-Sejdic, and D.E. Williams
University of Auckland, Auckland, New Zealand

Electrochemically-active conducting polymers (ECP) swell or shrink in response to ion and solvent incorporation or ejection as a result of electrochemical reaction of the polymer. When anodic potential is applied to an electrode attached to one end of ECP strip, the oxidation process ... Saiba Mais

Parameter Optimization for FEM Based Modeling of Singlet Oxygen During PDT Using COMSOL

T.C. Zhu, and X. Liang
University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent in photodynamic therapy (PDT). The reaction between 1O2 and tumor cells defines the treatment efficacy. Based on a previously developed model that incorporates the diffusion equation for the light transport in tissue and the macroscopic ... Saiba Mais

The 3D Mixed-Dimensional Quench Model of a High Aspect Ratio High Temperature Superconducting Coated Conductor Tape

W.K. Chan[1,2], J. Schwartz[2], P. Masson[3], and C. Luongo[4]
[1]FAMU-FSU College of Engineering, Tallahassee, FL, USA
[2]North Carolina State University, Raleigh, NC, USA
[3]Advanced Magnet Lab, Palm Bay, FL, USA
[4]ITER Organization/Magnet Division, Saint Paul-lez-Durance, France

A successful development of an effective quench detection and protection method for a high temperature superconducting (HTS) coil based on a HTS coated conductor tape lays on a thorough understanding of its slowly propagating, three-dimension (3D) quench behavior. Toward this goal, a 3D ... Saiba Mais

Modeling of Transport Phenomena during Hydrogen Uptake in an Alanate Storage System Equipped With Metallic Honeycomb Heat Exchanger

M. Bhouri[1], J. Goyette[1], B.J. Hardy[2], and D.L. Anton[2]
[1]Hydrogen Research Institute, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
[2]Savannah River National Laboratory, Aiken, SC, USA

In this paper, a metallic honeycomb structure is used as a heat exchanger in order to improve the hydrogen refuelling time for an alanate storage system. Using COMSOL software, the heat exchanger structure and the hydride bed are modeled as a two separate media and the governing ... Saiba Mais

Modeling of Highly Stable Thermal Environment Using COMSOL

A. Alfauwaz, and K. Sun
Stanford University, Stanford, CA, USA

Precise physics experiments in space require highly stable thermal environments, especially if the experiments are targeted in earth orbits where eclipses will cast large temperature variation. We have been designing and modeling a thermal system with sub micro-kelvin stability using ... Saiba Mais

FEA Simulation of Passive Ferrofluid Cooling Systems

Z. Fang[1,2], R. O'Handley[2], Y. Liu[2], and M. Yang[2,3]
[1]Pennsylvania State University, University Park, PA, USA
[2]Ferro Solutions Inc., Woburn, MA, USA
[3]Massachusetts Institute of Technology, Cambridge, MA, USA

Here we investigate a promising passive cooling method through making advantage of the unique properties of ferrofluid. When a magnetic dipole or a permanent magnet is put at the hot side of a system, it will attract the cold ferrofluid to the hot place and displace the hot ferrofluid ... Saiba Mais

Expanding Your Materials Horizons

R.W. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The concept of virtual prototyping can be found linked to many different keywords in the literature: modeling, look-ahead problem solving, etc. This poster paper briefly discusses the potential real benefits that can be realized through pre-build cost savings, minimization of the number ... Saiba Mais

Thermal Printing on Composite Media

W.T. Vetterling
ZINK Imaging, Bedford, MA, USA

In direct thermal printing, media is exposed to heat pulses from a print head carrying a linear array of resistive heaters. In this study we investigate the degree to which a thin substrate can be combined with a more compressible sub-layer to provide a composite structure that will hug ... Saiba Mais