Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Simulations of MEMS Based Piezoresistive Accelerometer Designs in COMSOL

N. Bhalla[1], S. Li[2], and D. Chung[1]
[1]Chung Yuan Christian University, Taiwan, (R.O.C)
[2]National Tsing Hua University, Taiwan, (R.O.C)

Different configurations of MEMS based accelerometer has been made and analysed using COMSOL Multiphysics. The designs presented in this paper consist of a square shaped proof mass with flexures supporting it. Different position and varied number of supporting flexures attached to the proof mass makes each configuration distinct. The piezoresistors are placed near the proof mass and frame ends ...

The Transient Modeling of Single-Bubble Nucleate Boiling in a Sub-Cooled Liquid Using an ALE Moving Mesh

C. J. Forster, and M. K. Smith
Georgia Institute of Technology
Athens, GA

This paper investigates the evolution of a single bubble going through growth, pinch-off, and condensation while rising due to buoyancy forces in a sub-cooled liquid. Phase change is modeled on the evolving liquid-vapor interface by considering changes in enthalpy and heat fluxes at the interface. A comparison of the ALE model is made with the same single-bubble system computed with a level ...

Modeling of Tumor Location Effect in Breast Microwave Imaging using COMSOL

E. Khosrowshahli[1], and A. Jeremic[2]
[1]School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
[2]McMaster University, Dept. of Electrical and Computer Engineering, McMaster University,
Hamilton, ON, Canada

Microwave imaging has been recently proposed as a potentially useful screening technique for breast cancer. This method detects abnormalities in the tissue based on permittivity difference between breast normal and malignant tissue. In this method breast is illuminated by high frequency electromagnetic wave, and received waves are then analyzed in order to construct a map of breast\'s ...

Modeling Linear Viscoelasticity in Glassy Polymers using Standard Rheological Models

M. Haghighi-Yazdi, and P. Lee-Sullivan
University of Waterloo
Waterloo, ON

In this study, a capability has been developed for modeling the linear viscoelastic behaviour of a glassy polymer using COMSOL Multiphysics®. The two rheological models by Maxwell and Kelvin-Voigt were used for modeling stress relaxation and creep loading behavior, respectively, of a typical gas pipe under two modes of plane stress and plane strain. An advantage of the developed model is its ...

A 2D Axisymmetric Electrodeposition Model

R. Pryor
Pryor Knowledge Systems, Inc.
Bloomfield Hills, MI

Electroplating is a vital technology widely employed for many technological applications ranging from decorative or anti-corrosion coatings to high precision nanotechnology passive electromagnetic cloaking devices. This 2D Axisymmetric Electroplating Model demonstrates one of the modeling methodologies that can be used to calculate the transient generation of a coating thickness of a ...

Design of Cooling System for Electronic Devices Using Impinging Jets

P. Lin[1], C. Chang[2], H. Huang[3], and B. Zheng[4]
[1]Mechanical and Aerospace Eng., Rutgers, The State University of New Jersey, Piscataway, NJ
[2]FTR Systems (Shanghai) Inc., Shanghai, China
[3]PolarOnyx, Inc., San Jose, CA
[4]School of Mechatronics Eng., University of Electronic Science and Technology of China, Chengdu, China

The heat sink designs using impinging liquid jets, which form stagnation flows, feature uniform heat transfer coefficients, and provide thin thermal boundary layers, are studied to reduce the heat from GPUs. Three different designs using central, micro, and uniform-cross-section (UCS) central jets are studied and simulated in COMSOL. The efficiency factors, defined as the ratio of total ...

Simulation of an Atmospheric Pressure Direct Current Microplasma Discharge in He/N2

L. Tong
Keisoku Engineering System Co. Ltd.

A study of an atmospheric pressure direct current microplasma discharge in He/N2 is performed using COMSOL Multiphysics. The calculation of heat transfer is fully coupled with the plasma simulation so as to resolve the gas heating in discharges. A simple circuit model is used to decide the discharge voltage so that the current-voltage (I-V) characteristics are obtained. The I-V ...

Densification and Shape Change of Calcined High Level Waste During Hot-Isostatic Pressing

T. Burnett, and D. Lower
CH2M-WG Idaho, LLC
The Idaho Cleanup Project at the Idaho National Laboratory
Idaho Falls, ID

Hot Isostatic Pressing (HIP) has been selected as a means of treating calcined high level waste (HLW). The process combines high temperature and pressure to densify the HLW in to a mineral similar to the geologic formulation of granite. This study uses COMSOL to predict densification and shape deformation of a stainless steel can filled with HLW. Two approaches were used to model ...

Modeling of Microwave Heating of a Rotating Object in a Domestic Oven in COMSOL Multiphysics

J. Raj[1], S. Birla[2], K. Pitchai[3], J. Subbiah[2], and D. Jones[2]
[1]Indian Institute of Crop Processing Technology, Thanjavur, Tamil Nadu, India
[2]Dept. of Biological Systems Engineering, University of Nebraska Lincoln, Lincoln, NE
[3]Dept. of Food-Science, University of Nebraska Lincoln, Lincoln, NE

Domestic microwave ovens are notorious for their uneven heating of food materials. This is caused by a varying electromagnetic field whose variation is caused by a number of factors dependent on the oven and the food parameters. Experimental validation of heating would therefore give highly variable results and would be labour, resource and time intensive. Thus modeling of the microwave ...

Simulation of Dendritic Solidification in Cubic and HCP Crystals by Cellular Automaton and Phase-Field Models

M. A. Zaeem[1], H. Yin[2], and S. D. Felicelli[3]
[1]Center for Advanced Vehicular Systems, Mississippi State University, MS
[2]Oak Ridge National Laboratory, TN
[3]Mechanical Engineering Department, Mississippi State University, MS

A cellular automaton (CA)-finite element (FE) model and a phase field (PF)-FE model were used to simulate equiaxed dendritic growth during solidification of cubic and hexagonal crystals. The governing equations of PF model include three coupled partial differential equations (PDE) for evolution of concentration, temperature, and non-conserved PF variable. These PDEs were solved using the ...