Veja como a simulação multifísica é usada em pesquisa e desenvolvimento

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Veja a coleção da COMSOL Conference 2019

2014 - Cambridgex

Models of Simple Iron Cored Electromagnets novo

J. Mammadov[1]
[1]University of Manchester, Manchester, UK

This report mainly discusses the implementation and results of a project proposal, “Modelling using Finite Element Methods”. The report is devoted to implementation, which is a model of an electromagnet. The software tool that is used to model the electromagnet is COMSOL Multiphysics®, a ... Saiba Mais

Energy Pile Simulation – an Application of THM-Modeling novo

E. Holzbecher[1]
[1]Georg-August University, Göttingen, Germany

Energy piles, i.e. heat exchangers located within the foundation piles of buildings, are used for heating of cooling purposes. Although the absolute values of deformations and temperature gradients are low or moderate, the entire setting can be influenced by thermo-hydro-mechanical ... Saiba Mais

Transient Simulation of the Electrolyte Flow in a Closed Device for Precise Electrochemical Machining novo

M. Hackert-Oschätzchen[1], M. Penzel[1], M. Kowalick[1], G. Meichsner[2], A. Schubert[1,2]
[1]Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Precise electrochemical machining (PEM) is an innovative machining technology which results from further development of the electrochemical sinking. PEM works with pulsed low frequency direct current and oscillation of the tool electrode. As part of the project ‘Electrochemical machining ... Saiba Mais

Analysis of the Electrochemical Removal of Aluminum Matrix Composites Using Multiphysics Simulation novo

M. Hackert-Oschätzchen[1], N.Lehnert[1], M. Kowalick[1], G. Meichsner[2], A. Schubert[1,2]
[1]Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

In the Collaborative Research Centre 692 at TU Chemnitz several academic institutions work on aluminum matrix composites (AMCs). These materials consist of an aluminum matrix, which is reinforced by SiC or Al2O3 particles with dimensions less or equal 1 µm. One main task is finishing ... Saiba Mais

Implementation of COMSOL Multiphysics® in Simulink® S-Functions, Revisited novo

A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

COMSOL Multiphysics® has standard facilities to export models to SimuLink®. Normally, the standard export works well if the solvers, available in SimuLink, can handle the problem. However, if a model in COMSOL Multiphysics® needs special solvers, for example airflow or other non-linear ... Saiba Mais

3D Modeling of All-Superconducting Synchronous Electric Machine by Finite Element Method novo

D. Hu[1], M. Ainslie[1], J. Zou[1], D. Cardwell[1]
[1]Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Cambridge, UK

This paper presents the electromagnetic analysis of an all-superconducting synchronous electric machine, focusing on AC loss calculations in high temperature superconducting (HTS) coils. The numerical analyses of two 3D models are shown, including the model of the machine and its HTS ... Saiba Mais

COMSOL Multiphysics® Simulation of Energy Conversion and Storage Concepts Based on Oxide Crystals novo

C. Cherkouk[1], M. Zschornak[1], J. Hanzig[1], M. Nentwich[1], F. Meutzner[1], M. Urena[1], T. Leisegang[2], D. C. Meyer[1]
[1]Institute of Experimental Physics, Technische Universität Bergakademie, Freiberg, Germany
[2]Fraunhofer-Technologiezentrum, Freiberg, Germany

A mathematical model based on a finite element method (FEM) is presented as an initial approach for a system converting waste heat energy into chemical energy. This system consists of a pyroelectric LiNbO3 plate placed into a cylinder which undergoes a laminar water flow with an ... Saiba Mais

Thermal Management of Li-ion Battery Packs novo

D. Adair[1], K. Ismailov[2], Z. Bakenov[3]
[1]School of Engineering, Nazarbayev University, Astana, Kazakhstan
[2]CPS, Nazarbayev University, Astana, Kazakhstan
[3]Institute of Batteries, Astana, Kazakhstan

A design for the thermal management of the media used for packing Li-ion batteries used in hybrid and electric vehicles has been developed. The design satisfies all thermal and physical issues relating to the battery packs used in vehicles such as operating temperature range and volume, ... Saiba Mais

Modeling of Anisotropic Laminated Magnetic Cores Using Homogenization Approaches novo

H. Neubert[1], J. Ziske[1], R. Disselnkötter[2]
[1]Technische Universität Dresden, Institute of Electromechanical and Electronic Design, Dresden, Germany
[2]ABB Corporate Research Center, Ladenburg, Germany

3D-modeling of magnetic components with FEM is challenging due to the involved nonlinearities and coupling effects between different physical domains. A specific issue is the consideration of lamination due to the high resulting element count for thin layers. Therefore, several ... Saiba Mais

Role of the Diffusion Current in Nonequilibrium Modeling of Welding Arcs novo

M. Baeva[1]
[1]INP Greifswald e.V., Greifswald, Germany

2D self-consistent nonequilibrium model of a free-burning arc in argon has been developed. The model is based on the COMSOL Multiphysics® platform and describes in a self-consistent manner the fluid dynamics, the heat transfer, the magneto-electrodynamics, and species conservation. The ... Saiba Mais