Veja como a simulação multifísica é usada em pesquisa e desenvolvimento

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Veja a coleção da COMSOL Conference 2019

2018 - Allx

Simulation of an Oxygen Delignification Reactor in the Kraft Pulp Production Process

D. do Mato Lara [1], J. da Luz Maeiski [1], I. Neitzel [1]
[1] Faculdade de Telêmaco Borba, Telêmaco Borba, PR, Brazil

Oxygen delignification is a technology established worldwide and a common operation in pulp mills that use Kraft cooking. The reasons for using this technology are the reduction of organochlorine compounds in the effluents, and economy of chemicals in the bleaching stage. The objective ... Saiba Mais

Simulation of Adsorption Mechanisms of Methane and Carbon Dioxide in Shale Matrix

J. G. Moreira [1], A. L. Manriquez [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

The aim of this research is to contribute with the development of Carbon Capture and Storage techniques by studying carbon dioxide (CO2) adsorption mechanisms in shale reservoirs. Gas desorption is considered a major gas production mechanism and has a relevant role in shale gas ... Saiba Mais

Plasmon Enhanced Fluorescence Characteristics Government by Selecting the Right Objective Function

M. Csete [1], A. Szenes [1], D. Vass [1], B. Bánhelyi [2], T. Csendes [2], G. Szabó [1]
[1] Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2] Department of Computational Optimization, University of Szeged, Szeged, Hungary

Core-shell type plasmonic nanoresonators have been optimized to maximize the fluorescence rate of coupled dipolar emitters, namely SiV color centers in diamond. The RF module of the COMSOL Multiphysics® software was applied to extract the optical response and to analyze the near-field ... Saiba Mais

Numerical Simulation of Coupled Fluid-Solid Interaction in Digital Rock Samples

V. Das [1], T. Mukerji [1], G. Mavko [1],
[1] Stanford University, Stanford, CA, USA

Digital rock physics (DRP) is an emerging field where a rock sample is imaged, relevant physical processes are simulated numerically on the digital rock sample, and the numerical solutions are used for understanding and interpreting the rock in different in-situ conditions. The use of ... Saiba Mais

Numerical Evaluation of the Polarizability Tensors of Stem Cells with Realistic 3D Shapes

S. Baidya [1], A. M. Hassan [1], B. A. Pazmiño Betancourt [2], J. F. Douglas [2], E. J. Garboczi [3],
[1] Computer Science Electrical Engineering Department, University of Missouri - Kansas City, Kansas City, MO, USA
[2] Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
[3] Applied Chemicals and Materials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA

Most of the reported studies on the electrical characteristics of biological cells assume that they have simple shapes like spheres or ellipsoids due to the lack of information about their accurate 3D shape. However, the actual shape of a cell can be quite fractal and it must be taken ... Saiba Mais

Nonhomogeneous Heat Transfer Simulation Using a Female Human Model

M. Castellani [1], T. Rioux [1], X. Xu [1],
[1] U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA

Previously researchers have modeled the human body using CAD software to create geometries that are approximately the same shape as the human body. While these CAD designs appear similar, they do not account for complex organ anatomy or sudden changes at the skin surface. Now, the human ... Saiba Mais

Multiphysics Simulation of 2nd Generation 238Pu Production Designs Using the COMSOL Multiphysics® software

C. J. Hurt [1], J. D. Freels [1], A. Elzawawy [2],
[1] Research Reactors Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2] Vaughn College of Aeronautics and Technology, East Elmhurst, NY, USA

In order to qualify experiments for in-vessel irradiation at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, safety assessments need to be completed and documented to ensure adequate target cooling and structural integrity. Previously, finite element analysis ... Saiba Mais

Multidisciplinary Simulation Based Learning Enhancement Module

A. K. Datta [1], M. Ukidwe [1], A. Warning [1], K. Bhunia [1],
[1] Cornell University, Ithaca, NY, USA

Simulation based learning modules can be effectively introduced to a large audience with customization. The simulation modules can essentially engage learners from diverse background and efficiently introduce the quantitative approaches to non-engineers. Moreover, those can greatly help ... Saiba Mais

Modeling Two Phase Fluid Flow in High Speed Counter Current Chromatography

G. Stevens [1], K. Weisbrod [1], R. Chamberlin [1], S. Yarbro [1],
[1] Los Alamos National Laboratory, Los Alamos, NM, USA

High-speed counter current chromatography (HSCCC) is a unique process presenting possibilities for efficient separations by creating a large interfacial area between two phases in counter current flow. Millifluidic channels rotate about both planetary and solar axes to create a rapidly ... Saiba Mais

Modeling of Avalanche Breakdown in Silicon and Gallium Nitride High-Voltage Diodes using COMSOL®

J. R. Dickerson [1], G. W. Pickrell [1], R. J. Kaplar [1],
[1] Sandia National Laboratories, Albuquerque, NM, USA

For high-power semiconductor devices to function correctly, it is imperative to manage the electric fields inside of the device. This is typically done using an edge termination scheme such as guard rings or junction termination extensions. Edge terminations are used to spread localized ... Saiba Mais