Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

COMSOL Multiphysics® Software and PV: A Unified Platform for Numerical Simulation of Solar Cells and Modules

M. Nardone [1],
[1] Bowling Green State University, Bowling Green, OH, USA

Introduction: Existing solar cell (photovoltaic, PV) device simulation software is either open source with limited capabilities (1D only) [1,2] or extremely expensive with obscure functionality [3]. PV researchers need an accessible and versatile simulation tool to optimize existing technologies and to reduce the time from concept to prototype for new technologies. This work demonstrates how ...

Experimental Validation of Induction Heating of MS Tube for Elevated Temperature NDT Application

B. Patidar [1],
[1] Bhabha Atomic Research Centre, Mumbai India

Induction heating is multiphysics process, which includes electromagnetic induction and heat transfer. Both the physics are nonlinearly coupled with each other. In this paper, mathematical modeling of induction heating of MS tube for elevated temperature NDT application is presented. Mathematical modeling of electromagnetic field is done by using magnetic vector potential formulation. Heat ...

Design Optimization of Printed Circuit Board Embedded Inductors through Genetic Algorithms with Verification by COMSOL Multiphysics®

M. Madsen[1], J. Mønster[1], A. Knott[1], M. Andersen[1]
[1]Technical University of Denmark, Lyngby, Denmark

This paper describes the implementation of a complete design tool for design, analysis, optimization and production of PCB embedded inductors. The paper shows how LiveLink™ for MATLAB® and COMSOL Multiphysics® make it possible to combine the scripting and calculation power of MATLAB with the simulation power of COMSOL Multiphysics in order to get an extremely efficient tool for inductor design. ...

Prediction of Noise Generated by Electromagnetic Forces in Induction Motors - new

M. K. Nguyen[1], R. Haettel[2], A. Daneryd[2]
[1]KTH, Stockholm, Sweden
[2]ABB Corporate Research,Västerås, Sweden

Induction motors, as any other industrial products, have to comply with various requirements on noise levels. Therefore, it is essential to use an appropriate prediction tool to verify and optimize the design of an induction motor with respect to the acoustic performances. The paper will focus on the prediction of the magnetic noise generated and radiated by a specific motor. The challenge is ...

Modeling a Brushless DC Motor for an Advanced Actuation System using COMSOL Multiphysics® Software

K. S. Shinoy [1], B. Sebastian [1],
[1] Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, India.

This paper presents the design and analysis of a high power radial flux Brushless DC motor for electro-mechanical actuation system. The motor is used for driving an electro-mechanical actuator of 20 ton capacity. Surface mounted, radially magnetized permanent magnet design is mostly preferred due to its ease of control, high efficiency and low maintenance. The motor under consideration is having ...

Simulation of Passive Magnetic Bearing Using COMSOL Multiphysics

K. Falkowski
Military University of Technology
Warsaw, Poland

The article presents the process of verification of the passive magnetic bearing by the Comsol Multiphysic program. There is shown construction of the radial passive magnetic bearing PMB60x85x20-5, which was designed in the Military University of Technology. The distribution of the magnetic flux density and the static characteristic of the bearing were estimated by the Comsol Multiphysic. The ...

A 2D Model of a DC Plasma Torch

B. Chine' [1],
[1] School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica

Plasma torches are used in processing of materials as well as in the energy industry for producing plasma. In a non-transferred arc plasma torch, an electric arc can be initiated by applying a direct current (DC) between the cathode and anode, both placed inside the torch. Then, the plasma is obtained by heating, ionizing and expanding a working gas, introduced into the chamber of the torch ...

Electrical Conductivity Modeling and Validation in Unidirectional Carbon Fiber Reinforced Polymer Composites

P. Banerjee[1], J. L. Schmidt[1]
[1]Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA

Carbon fiber (CF) reinforced polymer composites (CFRP) have begun to replace Al-Zn-Mg alloys in applications which require high strength-to-weight ratios. The anisotropy of CFRP composites is a result of melt crystallized extrusion techniques that impart an inherent directionality to the CFs and the associated material’s properties. Electrical conductivity was modeled across the entire CF ...

Calculation of Cable Parameters for Different Cable Shapes 

H. Lorenzen[1], J. Timmerberg[1], and S. Mylvaganam[2]
[1]Department of Electrical Engineering, UAS OOW, Wilhelmshaven, Germany
[2]Department Technology/Engineering, Telemark University College, Porsgrunn, Norway

Efforts involving simulation of  transmission line networks necessitate the accurate values of the parameters of the lines. In this paper, as an attempt in estimating such parameters, the parameters of high voltage asymmetric power lines are calculated. In the process of estimation, the three phase equivalent circuit model is used. The resistance and inductance of such lines are dependent ...

Electrostatic Precipitators - Modeling and Analytical Verification Concept

D. Rubinetti [1], Dr. D. Weiss [1], W. Egli [2],
[1] Institute of Thermodynamics and Fluid Engineering, University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland
[2] EGW Software Engineering, Switzerland

Electrostatic precipitators (ESP) are a reliable technology to control emissions of airborne particles in a series of applications such as coal-fired power plants, cement plants or even for domestic fireplaces. Numerical calculations allow further development of electrostatic precipitators avoiding expensive test stands and field tests. The numerical model in this work is based on Navier ...