Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

COMSOL Multiphysics® Simulation of Ultrasonic Energy in Cleaning Tanks - new

L. Zhong[1]
[1]Seagate Technology, Bloomington, MN, USA

Ultrasonic based cleaning process, widely used in various industries, mainly utilizes the cavitation effect to achieve contamination removal. For a given set of ultrasonic tank parameters, such as cleaning fluid, temperature, frequency etc, the cavitation effect is largely impacted by the amount of ultrasonic energy. Determining optimal ultrasonic energy level often becomes the key to the ...

Compression Driver Simulation Including Air Damping in Phase Plug

R.Christensen, and U. Skov
iCapture ApS
Gadstrup, Denmark

A compression driver is a certain type of electrodynamic loudspeaker which has a phase plug with slits in front of the diaphragm. The slits are narrow enough that the so-called viscothermal effects are of significant importance. In this paper a 2D axisymmetric finite element model of a commercial compression driver is established where the vibroacoustic behavior can be evaluated. The ...

Design and Implementation of Multichannel Piezoelectric Acoustic Sensor

R. S. Hallikar [1], S. Munshi [1], M. U. Kumari[1], K. Padmaraju[2],
[1] R. V. College of Engineering, Bengaluru, Karnataka, India
[2] JNTU Kakinada, Kakinada, Andhra Pradesh, India

This paper concentrates on developing a self-contained cochlea whose performance is at par with natural hearing. The Artificial Basilar Membrane (ABM) design is done in such a manner so as to get a performance similar to the natural hearing. Finite element analysis was done with the help of COMSOL Multiphysics software. Two materials, Polyvinylidene fluoride (PVDF) and lead zirconate titanate ( ...

Simulação de um Sistema de Levitação Acústica para Manipulação de Partículas em Ar

M. A. B. Andrade [1], N. Pérez [2], J. C. Adamowski [3],
[1] Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brasil
[2] Centro Universitario de Paysandú, Universidad de la República, Paysandú, Uruguai
[3] Departamento de Engenharia Mecatrônica e Sistemas Mecânicos, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brasil

Este trabalho apresenta a simulação numérica de um sistema de levitação acústica para manipulação de partículas em ar. O sistema de levitação consiste de dois transdutores de ultrassom e um refletor de face plana. Através da simulação é calculado o potencial da força de radiação acústica que atua numa esfera. Os resultados da simulação são verificados experimentalmente através da comparação da ...

Optimization of an Acoustic Waveguide for Professional Audio Applications

M. Cobianchi[1] and R. Magalotti[1]
[1] B&C Speakers S.p.a., Bagno a Ripoli, FI, Italia

In modern live sound reinforcement there is a growing use of line sources, obtained through the stacking of many loudspeakers with properly controlled wavefront shape. Thus the use of waveguides is mandatory in order to modify the shape and size of the wavefront exiting from professional compression drivers. With the help of COMSOL Multiphysics®, we have designed a waveguide featuring an ...

Lamb Waves in Fluid-Loaded Plates

T. Kaufmann[1], F. Kassubek[1], D. Pape [1], M. Lenner[1]
[1]ABB Corporate Research, Baden-Dättwil, Switzerland

Lamb waves are elastic waves propagating in free solid plates. In the case of plates loaded with a fluid, the equations describing these waves have to be modified to include the effects of the fluid. In our work we have tackled this problem using COMSOL Multiphysics®. We have used the two-dimensional plane strain model of the solid mechanics interface to calculate the eigenmodes of the coupled ...

Sound Field Analysis of Monumental Structures by the Application of Diffusion Equation Model - new

Z. S. Gul[1], N. Xiang[2], M. Caliskan[3]
[1]Department of Architecture, Middle East Technical University, Ankara, Turkey
[2]School of Architecture, Rensselaer Polytechnic Institute, Troy, NY, USA
[3]Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey

Sound energy distribution patterns within enclosed spaces are the basic concerns of architectural acoustics. Energy decays are analyzed for major acoustical parameter estimations, while spatial energy distribution and flow vectors are indicative in the analysis of sound energy circulation and concentration zones. In this study the acoustical field of a real-size multi-domed monumental ...

Design and Simulation of an Orbiting Piezoelectric MEMS Gyroscope Based on Detection of Phase-Shift Signals - new

S. Gorelick[1], J. R. Dekker[1], B. Guo[1], H. Rimminen[1]
[1] VTT Technical Research Centre of Finland, Espoo, Finland

The feasibility of phase-sensitive detection of angular-rates using bi-directional orbiting piezoresonators suspended by thick annular springs with thin-film aluminium nitride piezoactuators on top of them was investigated. The ring-shaped flexures are more suitable for supporting the orbiting motion due to their angle-dependent spring constant. The response of the orbiting resonators to ...

Time-Dependent Study of Pressure Waves Generated by Square Array MEMS Ultrasound Transducers

M. A. G. Suijlen [1], R. J. Woltjer [1],
[1] Novioscan, Nijmegen, Netherlands

For non-imaging wearable ultrasound applications Novioscan is developing piezoelectric MEMS transducers. These transducers consist of a large array of micromechanical silicon membranes with piezoelectrically actuated regions to generate an out-of-plane displacement causing a pressure wave in the adjacent medium. For a typical application of echo sounding in a human body such transducers operate ...

Acoustic Wave Crack Detection: A First Principles Approach

R. W. Pryor [1],
[1] Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

Crack detection is and has been an active field of exploration, both theoretical and applied for a number of years. It is the belief of this author that the concepts presented herein explore a new methodology for the modeling and the detection of cracks and families of cracks in crystalline solids, polycrystalline solids and high viscosity amorphous materials (glasses). In the case of the ...