Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.
COMSOL News Magazine 2017

Optimizing Performance of Equipment for Thermostimulation of Muscle Tissue using COMSOL Multiphysics

J. Kocbach[1], K. Folgerø[1], L. Mohn[2], O. Brix[3]
[1]Christian Michelsen Research, Bergen, Norway
[2]Luzmon Norway, Bergen, Norway
[3]Michelsen Medical, Bergen, Norway

The design challenge for thermostimulation equipment is to get a combination of high electric field strength and high temperature within the muscle tissue without causing pain or skin burns. In the present work, COMSOL Multiphysics is used to simulate the temperature distribution and electric field distribution within body tissue for varying body composition and varying design parameters of the ...

Computational Modeling of the Electrohydrodynamics Influencing Trace Mercury Adsorption within Electric Utility Electrostatic Precipitators

H. Clack[1]
[1]University of Michigan, Ann Arbor, MI, USA

Anthropogenic mercury (Hg) emissions increase the risk of neurological and neonatal health effects in humans through fish consumption. There are several technological approaches to controlling mercury emissions from coal combustion, including the injection of a powdered mercury sorbent into the flue gas upstream of the particulate control device (PCD). As most PCDs are electrostatic ...

Flow-induced Vibrations of the Uvula and its Implication on Snoring

J. Xi[1], Q. M. Mohamad[1], Y. E. Yuan[1], J. Rohlinger[1]
[1]Mechanical and Biomedical Engineering, Central Michigan University, Mount Pleasant, MI, USA

1. Flow-induced uvula deformation considerably altered the flow dynamics inside the nose. 2. For a weak soft palate, complete flow occlusion can occur (sleep apnea). 3. Vibration of the airway structures is crucial to better understand snoring generation mechanisms and breathing-related disorders.

Biofluid-Structural Interaction in Abdominal Aortic Aneurysm for Predicting Timeline to Rupture: The Effect of Hypertension and Aorta Wall Material Properties - new

K. Cluff[1], H. Mehraein[1], G. Jayakumar[2]
[1]Bioengineering, Wichita State University, Wichita, KS, USA
[2]Industrial & Manufacturing Engineering, Wichita State University, Wichita, KS, USA

An abdominal aortic aneurysm (AAA) is a bulge formed in the large blood vessels that supply blood to the abdomen, pelvis, and legs. A fluid structure interaction model was developed in a 3D aortic aneurysm model, which was constructed from abdominal CT scan images. Combining medical imaging and computational fluid dynamics (CFD) in a time dependent study allowed the determination of wall ...

Numerical Simulation and Thermal Analysis of Tumor in the Human Body

S. Hossain [1], F. A. Mohammadi [1]
[1] Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada

INTRODUCTION: Abnormalities in local body surface temperature have been recognized as a sign of disease for centuries, much before humans knew about the cause of ailments or of pain [1]. The idea of this work is to use numerical simulation tools to predict the location, size and metabolism of tumor embedded in any outer body organ of human. Idealized thermal data of an organ, modeled either as a ...

Shear Induced Detachment Of Microorganisms Attached To A Plane Wall

B. Boulbène, J. Morchain, and P. Schmitz
Université de Toulouse, NSA, UPS, INP, LISBP, Toulouse, France

We present numerical results involving microorganisms adhering to a plane surface submitted to a shear flow. The purpose is to have a better understanding of the removal mechanisms occurring during the cleaning in place of food processing equipments. The biological cell, i.e. the microorganism, is modelled as a rigid obstacle embedded in the bottom wall of the fluid domain. Shear induced ...

Modeling Heat and Mass Transfer in Bread During Baking

V. Nicolas[1,2], J.P. Ploteau[1], P. Salagnac[2], P. Glouannec[1], V. Jury[3], and L. Boillereaux[3]
[1]Laboratoire d’Ingénierie des MATériaux de Bretagne – Equipe Thermique et Energétique, Université Européenne de Bretagne, Lorient Cedex, France
[2]Laboratoire d’Etudes des Phénomènes de Transfert et de l’Instantanéité : Agro-industrie et Bâtiment, Université de La Rochelle, La Rochelle Cedex, France
[3]Laboratoire de Génie des Procédés, Environnement, Agroalimentaire, ENITIAA, France

In this paper, we present a first model carried out with COMSOL Multiphysics to model bread baking, considering heat and mass transfer coupled with the phenomenon of swelling. This model predicts the pressures, temperatures and water contents evolutions in the dough for different energy requests. First results obtained are analyzed according to various physical parameters in order to better ...

In Silico Evaluation of Local Hemodynamics Following Vena Cava Filter Deployment

J. Ferdous[1], M. Ghaly [2], V. B. Kolachalama [3], T. Shazly[1,4]
[1]Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
[2]Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
[3]Charles Stark Draper Laboratory, Cambridge, MA, USA
[4]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Inferior vena cava (IVC) filters have become essential components in deep vein thrombosis treatment to prevent preventing pulmonary embolisms. Filter efficacy relies on maintaining IVC patency by preventing filter-induced thrombosis following clot capture. A computational model has been developed to determine whether a candidate filter design elicits hemodynamic patterns that promote thrombus ...

Modeling of snRNP Motion in the Nucleoplasm

M. Blaziková[1], J. Malínský[2], D. Stanek[3], and P. Herman[1]
[1]Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
[2]Institute of Experimental Medicine, Prague, Czech Republic
[3]Institute of Molecular Genetics, Prague, Czech Republic

Small nuclear ribonucleoprotein particles (snRNPs) are essential supramolecular complexes involved in pre-mRNA splicing, the process of post-transcriptional RNA modifications. The particles undergo complex assembly steps inside the cell nucleus in a highly dynamic compartment called the Cajal body. We have previously shown that the free diffusion model does not fully describe the snRNP motion ...

Simulating Organogenesis in COMSOL

D. Iber, D. Menshykau, and P. Germann
ETH Zürich
Department of Biosystems Science and Engineering
Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. Computational models can help to integrate available knowledge and to better understand the underlying regulatory logic. We are currently studying mechanistic models for the development of limbs, lungs, kidneys, and bone. We have tested a number of alternative methods to solve our spatio-temporal ...