Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.

Thermal-Optical Modeling of a Signal Enhancement Approach for Paper-Based Diagnostics

D. Gasperino [1]
[1] Intellectual Ventures Laboratory, Bellevue, WA, USA

INTRODUCTION: Point of care diagnostics aimed at low-resource settings need to be relatively simple, robust and low-cost. The most commonly-used diagnostic platform in these settings is the lateral flow assay (LFA). LFAs are paper-based immunoassays designed to perform on-strip binding with analytes in patient samples in order to generate a visual signal if disease-specific antigen is ...

Virtual Thermal Ablation in the Head and Neck using COMSOL Multiphysics

U. Topaloglu[1], Y. Yan[2], P. Novak[2], P. Spring[3], J. Suen[3], and G. Shafirstein[3]
[1] Department of Information Technology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
[2]Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
[3]Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA

Thermal ablation in the head and neck requires accurate thermal dose delivery to target tissue while protecting the structure and function of nearby tissue and organs. In this study, we present a method that allows importing Computed Tomography (CT) scans to COMSOL, in order to model accurately the expected pathological outcomes prior to thermal ablation treatment. Thermal ablation of a virtual ...

Energy Harvesting from Variation in Blood Pressure through Deformation of Arterial Wall using Electro-magneto-hydrodynamics

A. Pfenniger[1], V.M. Koch[2], A. Stahel[2], and R. Vogel[1]
[1]ARTORG Cardiovascular Engineering, University of Bern, Bern, Switzerland
[2]Bern University of Applied Sciences, Engineering and Information Technology, Biel, Switzerland

The present project aims at modelling a generator that harvests energy from the variation in blood pressure by exploiting the motion of the arterial wall between the diastolic and systolic phase of the cardiac cycle. The concept is to use a highly electrically conductive fluid, which is driven by the motion of the arterial wall within a separate compartment outside the artery. A constant ...

An Elastic and Hyperelastic Material Model of Joint Cartilage - Calculation of the Pressure Dependent Material Stress in Joint Cartilage

T. Reuter, and M. Hoffmann
fzmb GmbH
Research Centre of Medical Technology and Biotechnology
Bad Langensalza, Germany

In this paper we introduce a elastic and hyperelastic model to describe the pressure dependent material stress in joint cartilage. We used the pressure dependent E-modulus E = f(s) to calculate the material stress. E = f(s) is a degree 4 polynomial . The indentor was pressed 0.4 mm into the tissue. The results show that the maximal stress at the contact zone between indentor and cartilage ...

Deposition of Submicron Charged Spherical Particles in the Trachea of the Human Airways

H.O. Åkerstedt[1]
[1]Luleå University of Technology, Luleå, Sweden

This paper presents a numerical study of the deposition of submicron charged spherical particles caused by convection, Brownian and turbulent diffusion in a pipe with a smooth wall and with a cartilaginous ring wall structure (see figure). The model is supposed to describe deposition of charged particles in generation 0 (trachea) of the human lung.The problem is defined by solving the fluid flow ...

Simulation of Normal and Cancerous T-cell Membrane Electroporation - new

O. Henao[1], V. Gómez[1], I. De la Pava[1], J. Sánchez[1]
[1]Grupo Fisiología Celular y Aplicada, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

Electroporation is an increase of the cell membrane permeability due to the formation of aqueous pores in it when the cell is under the influence of an intense electric field [1][2]. The formation of such pores in the membrane can be used to enhance the uptake of chemotherapeutic drugs into the cell in a cancer treatment known as electrochemotherapy [3]. In some cases the direct experimental ...

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the macroscopic ...

Validation of Measurement Strategies and Anisotropic Models Used in Electrical Reconstructions

R. Sadleir
Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA

We are developing approximations of electrically anisotropic materials for use in novel imaging methods. Our modeling work in COMSOL comprises comparisons of anisotropic and layered models in terms of electrical conductivities measured using different strategies. We tested solution stability in one anisotropic case by varying mesh anisotropy. In our case, good approximations to the true ...

Full-Wave Simulation of an Optofluidic Transmission-Mode Biosensor

E. P. Furlani[1], N. M. Litchinitse[2], and R. Biswas[2]

[1]The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, Buffalo, New York, USA
[2]Department of Electrical Engineering, The State University of New York at Buffalo,Buffalo, New York, USA

We present a study of an optofluidic biosensor. The sensor operates in a transmission mode wherein detection is based on a shift in the transmission spectrum caused by the contrast in refractive index between the carrier fluid and the target biomaterial. We study the behavior of the sensor using 2D full-wave electromagnetic analysis, and perform parametric studies of sensitivity as a function ...

An Efficient Finite Element Analysis on an RF Structure Used to Evaluate the Effect of Microwave Radiation on Uveal Melanoma Cells

A. Dulipovici[1], D. Roman[2], I. Stiharu[2], and V. Nerguizian[1]

[1]École de technologie supérieure, Montreal, Quebec, Canada
[2]Concordia University, Montreal, Quebec, Canada

The use of Microwave/RF energy on cancer cells is explored for tumor ablation using medium power level ranging between a few Watts to about 50 Watts. In this research, low power levels, less than 100 mWatt, are used to evaluate the effect of this energy on Uveal melanoma cells by proliferation tests. The COMSOL simulation of the RF structure used to evaluate the radiation energy on ...