See How Multiphysics Simulation Is Used in Research and Development

Aqui você encontrará apresentações realizadas nas Conferências de Usuários COMSOL de todo o mundo. As apresentações englobam pesquisas e produtos inovadores feitas por engenheiros e cientistas usando o COMSOL Multiphysics. Os tópicos abrangem uma grande gama de indústrias e aplicações, como elétrica, mecânica, escoamento e química. Use a função de busca "Quick Search" para encontrar apresentações na sua área de interesse.
View the COMSOL Conference 2018 Collection
Geophysics and Geomechanicsx

Modeling of Ultrasonic Transducers and Ultrasonic Wave Propagation for Commercial Applications Using Finite Elements with Experimental Visualization of Waves for Validation new

D. R. Andrews[1]
[1]Cambridge Ultrasonics, Over, UK

Finite element (FE) modelling of ultrasonic propagation using COMSOL Multiphysics® simulations can be used to create images of waves. Unfortunately, in time-stepping solutions, it is possible for numerical instabilities to grow large and dominate the solution adversely. Any design of ... Saiba Mais

Evaluation of Instability of a Low-salinity Density-dependent Flow in a Porous Medium new

Y. T. Habtemichael[1], R. T. Kiflemariam[2], H. R. Fuentes[1]
[1]Department of Civil & Environmental Engineering, Florida International University, Miami, FL, USA
[2]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

Seawater intrusion into coastal aquifers is usually modeled by using transport models that include account for the effect of variable-density on flow. Variable-density models can be validated with the Henry and Elder benchmark problems. However, when mixed convective flow is simulated ... Saiba Mais

Simulation of Geomechanical Reservoir Behavior during SAGD Process Using COMSOL Multiphysics®

X. Gong[1], R. Wan[1]
[1]University of Calgary, Calgary, AB, Canada

THM (Thermo-Hydro-Mechanical) behavior of the reservoir during SAGD (Steam-Assistant-Gravity-Drainage) was studied through a proper constitutive modeling of the porous media. Specifically, a generalized density-stress-fabric dependent elasto-plastic model with stress-dilatancy and ... Saiba Mais

Modeling Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics

T. Gasch [1], A. Ansell [1],
[1] KTH Royal Institute of Technology, Stockholm, Sweden

An extension of the Solid Mechanics interface in COMSOL Multiphysics® is presented to analyze localized deformations of quasi-brittle materials, for example cracking in concrete. This is achieved by implementing an isotropic damage mechanics constitutive law, which is combined with both ... Saiba Mais

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models ... Saiba Mais

Non-isothermal Flow of CO2 in Injection Wells: Evaluation of Different Injection Modes

O. Silva [1],
[1] Amphos 21 Consulting S.L., Barcelona, Spain

Injection conditions of CO2 at the wellhead may play a major role on the flow behavior through the wellbore. The density and the injection rate reached at the bottomhole are key factors affecting the performance and efficiency of CO2 geological storage. In this work, a model of non ... Saiba Mais

Calibration of a Geothermal Energy Pile Model new

R. Caulk[1], J. McCartney[2], E. Ghazanfari[1]
[1]University of Vermont, Burlington, VT, USA
[2]University of Colorado, Boulder, CO, USA

In this study, a model of in-situ geothermal energy piles was constructed using COMSOL Multiphysics® software. Geothermal energy piles serve two purposes, first to transfer building load into the subsurface, but also to extract thermal heat from surrounding soils. This is achieved using ... Saiba Mais

Computation of the Longitudinal Dispersion Coefficient in an Adsorbing Porous Medium Using Homogenization

A. Rijnks[1], M. Darwish[2], and H. Bruining[3]
[1]StatoilHydro ASA, Bergen, Norway
[2]Shell Exploration & Production International Centre, Rijswijk,
The Netherlands
[3]Section of Geoengineering, Faculty of Civil Engineering and Geosciences, TU Delft, Delft, The Netherlands

The method to derive upscaled expressions for the dispersion coefficients for reactive flow in a porous medium uses a periodic unit cell (PUC), which consists for instance of a spherical grain in a cube, but nothing prohibits defining more complex PUC's. Homogenization leads to a coupled ... Saiba Mais

CFD Simulation of Pore Pressure Oscillation Method to Measure the Permeability of Tight Formations

M. Mokhtari [1], S. A. Madani [1], A. Seibi [1],
[1] Department of Petroleum Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA

Accurate estimation of rock permeability and porosity play a crucial role in the evaluation of oil and gas reservoirs. This evaluation is, however, challenging in tight formations such as shale due to the slow transition of fluid in such formations with extremely-low permeability. To ... Saiba Mais

Full Coupling of Flow, Thermal and Mechanical Effects in COMSOL Multiphysics® for Simulation of Enhanced Geothermal Reservoirs

D. Sijacic[1], P. Fokker[1]
[1]TNO, Utrecht, The Netherlands

The effective modeling of enhanced geothermal systems (EGS) requires the coupling of geomechanics, fluid flow and thermal processes. An understanding of the complete system with these coupled processes is vital, not just for reservoir stimulation targeted at enhancing reservoir ... Saiba Mais

1–10 of 227